REVIEWS

Management of functional constipation in children and adults

Mana H. Vriesman 1, Ilan J. N. Koppen, Michael Camilleri, Carlo Di Lorenzo and Marc A. Benninga

Abstract | Functional constipation is common in children and adults worldwide. Functional constipation shows similarities in children and adults, but important differences also exist regarding epidemiology, symptomatology, pathophysiology, diagnostic workup and therapeutic management. In children, the approach focuses on the behavioural nature of the disorder and the initial therapeutic steps involve toilet training and laxatives. In adults, management focuses on excluding an underlying cause and differentiating between different subtypes of functional constipation — normal transit, slow transit or an evacuation disorder — which has important therapeutic consequences. Treatment of adult functional constipation involves lifestyle interventions, pelvic floor interventions (in the presence of a rectal evacuation disorder) and pharmacological therapy. When conventional treatments fail, children and adults are considered to have intractable functional constipation, a troublesome and distressing condition. Intractable constipation is managed with a stepwise approach and in rare cases requires surgical interventions such as antegrade continence enemas in children or colectomy procedures for adults. New drugs, including prokinetic and prosecretory agents, and surgical strategies, such as sacral nerve stimulation, have the potential to improve the management of children and adults with intractable functional constipation.

Functional constipation is defined as constipation without an organic aetiology and is diagnosed according to the Rome criteria¹⁻³. The symptom-based Rome criteria were first developed for adults in 1989 during a consensus meeting of experts in the field of functional gastrointestinal disorders. These criteria have been updated several times and are now internationally acknowledged and used for both research and clinical purposes. The first criteria for paediatric functional gastrointestinal disorders — the Rome II criteria — were published 10 years later, in 1999. The revised Rome IV criteria— for childhood and adult functional constipation — were published in 2016 (REFS¹⁻³) (BOX 1). Functional constipation, a common disorder in all age groups, shows some similarities in children and adults, but important differences exist regarding epidemiology, symptomatology, pathophysiology, diagnostic workup and therapeutic management. In this Review, we provide an overview of the literature on childhood and adult functional constipation and discuss current and future diagnostic and therapeutic management strategies.

Clinical symptoms

Symptoms of functional constipation in both children and adults include hard, infrequent bowel movements, often accompanied by symptoms of bloating and abdominal pain. Children often present with symptoms of

faecal incontinence, defined as the involuntary loss of stools in the underwear after being toilet trained, which is caused by overflow of soft stools passing around a solid faecal mass in the rectum (faecal impaction)4. Children with functional constipation also often have urinary symptoms, such as urinary incontinence and urinary tract infections⁵. Symptoms of faecal incontinence in adults are usually the result of another underlying pathology, such as dysfunction of the pelvic floor or obstetric trauma^{6,7}. Consequently, faecal incontinence is not included in the adult Rome IV criteria for functional constipation. It is important to note, however, that many adults might feel uncomfortable mentioning symptoms of incontinence and might not volunteer this information; the treating physician should, therefore, always ask about the presence of faecal incontinence. Adults often present with the sensation of incomplete evacuation or obstruction, often requiring manual manoeuvres to defaecate³. This symptom is rarely seen in children.

Subtypes of functional constipation

Three different subtypes of functional constipation are recognized: constipation with a normal transit, slow-transit constipation and rectal evacuation disorders. Faeces are propelled through the colon under the influence of muscular contractions of the intestinal wall.

Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam. Netherlands

²C.E.N.T.E.R. Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.

³Division of Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, OH, USA.

*e-mail: m.h.vriesman@ amc.nl

https://doi.org/10.1038/ s41575-019-0222-v

Key points

- Diagnosis of functional constipation is based on a thorough medical history and physical examination; additional testing is only indicated if alarm symptoms are present or conventional strategies fail.
- Functional constipation can be caused by lifestyle factors, psychological factors and behavioural factors; withholding behaviour is a key factor in the pathophysiology of childhood functional constipation, whereas adults often have dyssynergic defaecation patterns.
- In adults, additional testing is used to differentiate between different subtypes of functional constipation (normal transit, slow transit and evacuation disorders) as such information has important therapeutic consequences.
- Patients with intractable constipation should be referred to a gastroenterologist for further management; tests such as colonic transit time, anorectal manometry and a balloon expulsion test (in adults) might provide useful information.
- Surgery is a therapy of last resort; to date, no clear guidelines exist on the surgical management of functional constipation and procedures vary widely between children and adults.
- Future comparative randomized clinical trials are needed to further clarify the role of newer (prokinetic and prosecretory) pharmacological agents for the management of paediatric and adult functional constipation.

Transit marker studies and colonic scintigraphy are often used to determine colonic transit time (CTT), an indirect reflection of colonic motor function. In both children and adults, a delay in CTT has been described in a subset of patients with functional constipation and is referred to as slow-transit constipation. In children with functional constipation, 13-25% have slow-transit constipation⁸. In adults with functional constipation, the two types of delayed colonic transit most commonly described are proximal colonic transit delay characterized by slow transit in the ascending or ascending as well as transverse colon and delayed emptying of the left colon (in patients with dyssynergic defaecation)^{9,10}. In a large cohort study of more than 1,400 adults presenting with functional constipation, 65% had normal-transit constipation, 30% had an evacuation disorder, and 5% had evidence of slow-transit constipation¹⁰.

Epidemiology

Implementation of the Rome criteria has resulted in a more uniform definition of functional constipation and improved understanding of its prevalence. A 2018 systematic review and meta-analysis reported the worldwide pooled prevalence of functional constipation in children to be 9.5% (95% CI 7.5–12.1%)¹¹. Although some studies have suggested that constipation is more common in boys12, a meta-analysis reported no statistically significant difference in sex prevalence¹¹. Expert opinion suggests that older children and adolescents sometimes have a long history of unrecognized functional constipation if they are not comfortable in discussing their bowel habits, as parents are usually unaware of their children's defaecation patterns. Long-term follow-up studies have shown that 25% of children who receive treatment for functional constipation as a child still experience symptoms of constipation as adults¹³. Faecal incontinence and young age of onset (that is, <1 year versus >4 years) of constipation were factors associated with poor long-term prognosis14. These findings contradict the commonly held belief that paediatric functional constipation always disappears before adulthood.

A 2011 meta-analysis reported that functional constipation had a prevalence of 14% in adults and was more common in women than in men (OR 2.22, 95% CI 1.87–2.62)¹⁵. Moreover, in adults, the prevalence of constipation seems to increase with age and is higher in elderly patients than in younger adults, possibly owing to degeneration of epithelial, muscle and neural cells of the colon and pelvic floor¹⁶. To support this idea, a study using ex vivo preparations of human colon found that increasing age was associated with an increased likelihood of impaired cholinergic function in the ascending colon, possibly contributing to the age-related loss of neuromuscular activity¹⁷.

Pathophysiology

In children, an organic cause of constipation is rarely found and constipation is considered to be of functional origin in more than 95% of cases18. In our clinical experience, constipation secondary to a systemic disease or medication use is more common in adults than in the paediatric age group. Organic aetiologies of constipation in children and adults include intestinal conditions, anorectal conditions, metabolic and endocrine conditions and neuropathic conditions (TABLE 1). The differential diagnosis of organic causes of constipation differs substantially depending on the age at onset of symptoms. In an infant with constipation and a history of delayed passage of meconium, congenital disorders such as Hirschsprung disease, spinal cord defects and anorectal malformations should be excluded. In adolescents, an eating disorder should be excluded. In an elderly patient, degenerative diseases such as neuropathic conditions or polypharmacology often lead to constipation and should be carefully considered.

In both children and adults, the pathophysiology of functional constipation is considered to be multifactorial. Common pathophysiological factors include genetic factors, lifestyle factors (for example, diet and physical activity) and psychological disorders (FIG. 1), but some factors differ between children and adults. Adolescents with functional constipation show similarities with both children and adults but are regarded as children in this Review. Although some differences exist, elderly patients with functional constipation generally resemble younger adults and are only briefly discussed. Management of this patient population is discussed elsewhere¹⁹.

Genetic factors

Children and adults with functional constipation often have a positive family history of constipation, so it seems plausible that genetic predisposition might have a role in the pathophysiology of the condition^{6,20–22}. However, no specific genes have been linked with functional constipation and the exact role of genetic factors in its aetiology remains to be further clarified. Moreover, some studies in adults could not confirm a familial clustering of functional constipation and therefore suggested that familial aggregation might reflect an acquired aetiology associated with lifestyle and environmental factors

prevailing in certain families, rather than resulting from actual genetic factors²³.

Lifestyle factors

Diet. Dietary factors have an important role in the pathophysiology of functional constipation in both children and adults. During infancy, feeding changes, such as the transition from breastfeeding to formula feeding or the introduction of solid foods, are often a trigger for the onset of functional constipation²⁴. Whether cow's milk protein allergy is associated with functional constipation is a matter of debate. A literature review of ten studies reported that a diet free from cow's milk resulted in an improvement in functional constipation in 28-78% of children²⁵, and so constipation is sometimes considered to be a result of a food allergy. This idea is supported by evidence of histological changes in the colonic mucosa in children with chronic constipation indicating inflammation²⁶. However, current European Society for Paediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) and North American Society for Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN) paediatric guidelines state that a 2-week to 4-week trial of cow's milk avoidance should be reserved for children who do not respond to conventional strategies²⁷. A low intake of fibre or fluids is known to predispose to constipation in school children, adolescents and adults^{28,29}. Moreover, in adolescents with constipation, clinicians should always consider the presence of an eating disorder³⁰. In patients with anorexia nervosa or bulimia, constipation can arise from insufficient food and fluid intake and these patients are at risk of laxative abuse. Early recognition of such a situation is crucial and avoids unnecessary diagnostic testing and pharmacological therapy.

Obesity and physical activity. A potential association between obesity and constipation is controversial, and paediatric and adult studies have reported conflicting

data^{31–34}. Along with the mechanical effects of obesity creating tension on the pelvic floor³⁵, decreased physical activity has also been suggested to be an important risk factor for constipation in children and adults and might contribute to the possible association between obesity and functional constipation^{15,29,36–38}.

Microbiome

The role of the gut microbiome in the pathophysiology of functional constipation is incompletely understood. Intestinal microbiota have been shown to differ between healthy individuals and small samples of children and adults with functional constipation, suggesting a possible role for microbial disturbances in the development of constipation; however, microbiota characteristics related to functional constipation differ between studies^{39,40}. Such an association could be explained by gut microbiota having modulating effects on gastrointestinal motility as reported in animal studies⁴¹, or by metabolites and fermentation products having osmotic effects and causing increased gas production⁴². Research is needed to unravel the role of gut microbiota in the pathophysiology of functional constipation and to optimize potential microbiota-based interventions in patients with functional constipation.

Colonic motility factors

Colonic motility dysfunction is thought to be present in a subset of children and adults with functional constipation with delayed transit time. This idea is supported by colonic manometry studies in children and adults, which report that high-amplitude propagating contractions (HAPCs) occur less frequently in patients with slow-transit functional constipation than in patients without constipation ^{43–46}. HAPCs are considered to be responsible for the mass movement of colonic contents in an anterograde direction and this motor pattern often occurs after a meal and upon awakening. Novel advances in manometry techniques have enabled more detailed

Box 1 | Rome IV criteria for functional constipation

Infants and toddlers¹

Must have ≥ 2 of the following criteria for ≥ 1 month:

- ≤2 defaecations per week
- History of painful or hard bowel movements
- History of excessive stool retention
- History of large diameter stools
- Presence of a large faecal mass in the rectum
- ≥1 episode of faecal incontinence per week^a
- History of large diameter stools that can obstruct the toilet^a

Children and adolescents²

Must have ≥ 2 the following criteria for ≥ 1 month:

- ≤2 defaecations in the toilet per week
- History of painful or hard bowel movements
- History of retentive posturing or excessive volitional stool retention
- History of large diameter stools that can obstruct the toilet
- Presence of a large faecal mass in the rectum
- ullet \geq 1 episode of faecal incontinence per week

AND:

• Insufficient criteria for irritable bowel syndrome

Adults

Must have ≥ 2 the following criteria for ≥ 3 months^b:

- ≤2 defaecations in the toilet per week
- Lumpy or hard stools more than 25% of defaecations
- Straining during more than 25% of defaecations
- Sensation of incomplete evacuation more than 25% of defaecations
- Sensation of anorectal obstruction/blockage more than 25% of defaecations
- Manual manoeuvres to facilitate more than 25% of defaecations

AND both of the following:

- Insufficient criteria for irritable bowel syndrome
- Loose stools are rarely present without the use of laxatives

^aIn toilet-trained children.

 b With symptom onset $\geq\!6$ months prior to diagnosis. Reproduced with permission from REFS $^{1-3}$, Elsevier.

Table 1 Organic aetiologies of constipation based on age at symptom on	Table 1
--	---------

Table 1 Organic aetiologies of constipa		
Aetiology	Childhood	Adulthood (and elderly)
Intestinal conditions		
Cystic fibrosis	✓	×
Hirschsprung disease	✓	×
Neuronal intestinal dysplasia	✓	×
Intestinal carcinoma	×	✓
Stricture	✓	✓
Anorectal conditions		
Anorectal malformations	✓	×
Enterocele or rectocele	×	✓
Prolapse	×	✓
Descending perineum syndrome	×	✓
Traumatic (e.g. obstetric or surgical)	×	✓
Anismus	✓	✓
Metabolic and endocrine conditions		
Pregnancy	×	✓
Menopause	×	✓
Hypercalcaemia	✓	✓
Hypokalaemia	✓	1
Hypothyroidism	✓	1
Dehydration	✓	1
Diabetes mellitus	✓	/
Porphyria	✓	1
Uraemia	✓	1
Coeliac disease	✓	1
Neuropathic conditions		
Spinal cord abnormalities	✓	×
Tethered cord	✓	×
Neurofibromatosis	✓	×
Parkinson disease	×	1
Multiple sclerosis	×	1
Myelodysplasia	1	1
Spinal cord trauma	· /	<i>'</i>
Myelomeningocele	<i>'</i>	./
Botulism	<i>'</i>	<i>'</i>
Chagas disease	√	<i>y</i>
-	•	· .
Autonomic neuropathy	√ √	1
Myotonic dystrophy	•	•
Myopathy Systemic solorosis	√	,
Systemic sclerosis Amyloidosis	<i>y</i>	1
•	•	•
Drugs Opioids	√	/
Calcium channel blockers	y	√
Anticholinergic agents	<i>y</i>	✓ ✓
Antidepressants	✓ ✓	✓ ✓
Antipsychotics	√	<i>y</i>
	√	✓
Chemotherapeutic agents	V	V

visualization of colonic motor patterns and have identified several differences in expression of colonic motility patterns in healthy and symptomatic individuals, possibly uncovering pathophysiological mechanisms underlying functional constipation^{47,48}. New findings suggest that the most prominent motor pattern seen in healthy adults, the retrograde cyclic motor pattern, occurs less frequently in children and adults with functional constipation^{49,50}. These contractions represent a distal colonic motor pattern repetitively occurring at 2–6 cycles per minute, propagating in a predominantly retrograde direction, and increasing after a meal in healthy individuals. The clinical meaning of these findings is still uncertain.

Anorectal factors

A large subset of adult patients with functional constipation show evidence of impaired anorectal function and/or structure, resulting in difficulty in expelling stools from the rectum. These evacuation disorders, sometimes referred to as defaecation disorders, are associated with symptoms of straining, a sensation of incomplete evacuation, abnormalities of rectal sensation and manual facilitation of defaecation. However, diagnosis of evacuation disorders requires careful additional diagnostic testing. One of the most common evacuation disorders is dyssynergic defaecation, the inability to coordinate the abdominal and pelvic floor muscles to evacuate stools because of paradoxical contraction or inadequate anal relaxation^{10,51}. Other (usually older) adults have rectal hyposensitivity, defined as elevated sensory thresholds to rectal balloon distention testing, associated with symptoms of constipation and faecal incontinence. A more detailed description of the diagnosis and management of anorectal disorders is provided elsewhere^{52,53}.

Psychological and behavioural factors

Psychological factors. An association between psychological factors and functional constipation has been reported in several studies⁵⁴⁻⁵⁷. In children, constipation has been reported to be more common in children with specific behavioural disorders such as autism and attention deficit disorders than in those without such disorders^{58,59}. Specific psychological traits such as anxiety and depression symptoms have been reported to be more common in both children and adults with functional constipation than in healthy individuals as controls60-62. Moreover, stressful life events such as physical or psychological trauma might have a role in the development of functional constipation, as such events more commonly occur in children and adults with functional constipation than in their healthy peers⁶²⁻⁶⁴. The elderly population, who experience issues such as social isolation and decreased daily activity, are at particular risk of psychological causes of constipation⁶⁵.

An association between psychological factors and functional constipation might be related to the braingut axis (FIG. 1). In children and adults with functional constipation, sensations such as pain and abdominal distention arising from the colon are processed via afferent pathways from the enteric nervous system to the

Table 1 (cont.) | Organic aetiologies of constipation based on age at symptom onset

	•	•	•	•
Aetiology		Childhood		Adulthood (and elderly)
Psychological conditions				
Eating disorders		✓		1
Depression		✓		1
Other				
Dietary protein allergy		✓		×
Immobility		1		1

cerebral cortex. These pathways might eventually affect brain processing and lead to psychological problems. Another idea is that psychological and emotional components might modulate colonic and rectal function via efferent pathways, resulting in gastrointestinal dysfunction of to support this theory, studies using functional MRI reported that, compared with healthy individuals as controls, paediatric and adult patients with functional constipation showed different patterns of brain processing in response to rectal distention and a distinct baseline brain activity pattern of the pattern of the processing in activity pattern of the pattern of

Behavioural factors. The age of onset of functional constipation in children is usually around the time of toilet training and such cases are probably related to behavioural factors associated with this developmental phase⁶⁹. Withholding behaviour is considered the most common cause of constipation in children⁷⁰, an important difference compared with adults in whom failure of evacuation while straining (or dyssynergic defaecation) is the cause of constipation in 25-35% of patients¹⁰. Stool withholding behaviour can be triggered by an experience of hard or painful stools, and is sometimes aggravated by a history of anal fissures or fear during toileting⁷¹. In 50% of adolescents and 40% of adults, learned behaviour to suppress the urge to defaecate is also present⁷²⁻⁷⁴. Adolescents and adults sometimes avoid bathrooms at school and work or unfamiliar places, thereby ignoring the urge to defaecate⁷⁵. In older adults, stool retention can arise from decreased awareness of the urge to defaecate.

Stool withholding behaviour results in retained stools become harder owing to water absorption by the colonic mucosa, which makes them more difficult to evacuate, resulting in more painful defaecation. A vicious cycle of more withholding behaviour can ensue and can result in faecal impaction. Frequent faecal impactions can eventually result in the development of a megarectum and can lead to symptoms of overflow faecal incontinence, decreased rectal sensation and, ultimately, an impaired sensation and urge to defaecate⁷⁶. Therefore, in time, repeated suppression of the urge to defaecate might eventually lead to conditions such as dyssynergic defaecation and slow-transit constipation.

Parental factors

Parental factors also have an important role in the pathophysiology and prognosis of childhood functional constipation. Certain parental characteristics, for instance neuroticism and depression, and parental rearing attitudes, such as overprotection and attitudes that foster a high or low degree of autonomy, are reported to be associated with constipation and faecal incontinence^{77,78}. In such circumstances, a family-based approach might be of benefit.

Diagnosis

Functional constipation is a clinical diagnosis made according to the Rome IV criteria (BOX 1). In children and adults presenting with constipation, a thorough medical history and complete physical examination can be sufficient to establish the diagnosis. Identification of alarm symptoms, which differ between children and adults (BOX 2), raises the suspicion of underlying organic conditions^{27,52}. In children, alarm symptoms include signs of congenital abnormalities, stunted growth and symptoms suggestive of sexual abuse. In adults, alarm symptoms are those indicative of a colonic malignancy such as unintentional weight loss, recent change in bowel function, rectal bleeding or anaemia. A stepwise approach for the initial diagnosis and management of children and adults with functional constipation is provided^{27,79} (FIG. 2).

Physical examination

In both children and adults, a thorough physical examination consists of examination of the abdomen and inspection of the perianal region. A digital rectal examination (DRE) is not always necessary for the diagnosis of functional constipation in children already fulfilling two Rome IV criteria²⁷. In adults, however, a DRE is mandatory to exclude a mechanical obstruction such as a tumour or mass, and to evaluate anal sphincter and pelvic floor functions. When performed by an experienced physician, a DRE can provide information about sphincter function and is sometimes used to identify pelvic floor dyssynergia⁸⁰. The most useful factors to assess during a DRE in adults are absence of perineal descent on straining, high resting anal sphincter tone, tenderness of the anal sphincter and pelvic floor and paradoxical contraction of the pelvic floor when simulating the effort associated with straining to expel the examining finger from the rectum and anal canal. These DRE findings are significantly correlated with objective parameters obtained with anorectal manometry (including resting anal sphincter pressure, anorectal difference pressure) and balloon expulsion time81.

Additional diagnostic testing

In children and adults, diagnostic procedures are only recommended in the presence of alarm symptoms (BOX 2) or if conventional therapeutic strategies fail. Diagnostic testing is more common in adults than in children and is used to exclude organic causes of constipation and to distinguish between the different subtypes of functional constipation (normal-transit constipation, slow-transit constipation or an evacuation disorder)⁵². In adults, these subtypes of constipation have different therapeutic implications and the correct diagnosis is therefore critical. In children, however, the evaluation of defaecation dynamics for the diagnosis of evacuation

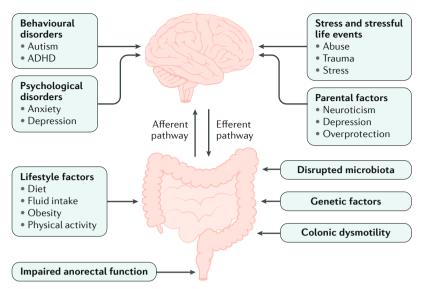


Fig. 1 \mid Pathophysiological factors of functional constipation in adults and children. An overview of the multifactorial aetiology of paediatric and adult functional constipation, including lifestyle factors and motility factors. Psychological and behavioural factors are associated with functional constipation via the efferent (carrying signals from the brain to the gut) and afferent (carrying signals from the gut to the brain) pathways of the brain—gut axis. ADHD, attention–deficit/hyperactivity disorder.

disorders can be challenging as it requires the child to understand the test procedure and cooperate fully. As functional constipation usually results from withholding behaviour, in young children differentiating between subtypes of constipation is of less importance in clinical practice. In adolescents, dyssynergic defaecation is more common than in young children and should be ruled out in those who fail conventional treatment.

The most frequently used additional tests for child-hood and adult constipation include laboratory testing, radiography, calculating colonic transit time, anorectal manometry, colonic manometry, contrast enema, the balloon expulsion test and defaecography. A more detailed description of the diagnosis (and management) of anorectal disorders is described elsewhere^{52,53}.

Laboratory testing. A complete blood count, biochemical profile, thyroid function and coeliac screening are only performed in the presence of alarm symptoms (BOX 2). The need for routine screening for cow's milk allergies and hypercalcaemia in children with functional constipation is not supported by current literature^{27,82}. Serological testing for coeliac disease and thyroid function is indicated in children and adults with short stature or unexpected weight loss, persistent gastrointestinal symptoms or a positive first-degree family history^{83,84}. Moreover, coeliac disease testing should be considered in adults with IBS⁸⁴.

Radiography. An abdominal X-ray to demonstrate an excessive colonic faecal load is still often used in an attempt to diagnose constipation⁸⁵. The use of routine X-ray for the diagnosis of constipation is not recommended in children, however²⁷. A systematic review showed a high variance in specificity and sensitivity of

abdominal radiography in the detection of faecal impaction in children ⁸⁶. More importantly, it exposes patients to unnecessary radiation ⁸⁷.

In adults, if abdominal CT or abdominal radiography has been performed for another indication (such as investigation of bloating or pain), the images could be used to obtain supportive evidence for clinically suspected rectal evacuation disorders by measuring the appearance of a rectal or pelvic gas shadow or stool located above the pelvic floor (approximately corresponding to the level of the ischial spines)88. A rectal gas area >900 mm² on a CT scan, the scout film of a CT scan or a plain abdominal radiograph has been reported to have 75% accuracy for predicting rectal evacuation disorder and might be useful for determining whether a patient should be referred for anorectal manometry or MRI defaecography⁸⁹. Further replication of these findings at other centres is awaited. CT scanning should be avoided if possible, however, especially in young fertile women, as it exposes patients to a relatively high level of radiation compared with other tests for rectal evacuation disorders.

Colonic transit time. CTT is usually assessed using ingestion of radiopaque markers and is calculated based on the number and location of the remaining intra-abdominal markers visualized on abdominal X-ray images at specific intervals after ingestions. Another method of determining CTT is scintigraphy, which involves ingestion of a radioisotope to assess colonic transit90. Studies have shown that scintigraphy is an effective tool in differentiating between normal and abnormal colonic motor function in both children and adults with severe constipation, and that it is well tolerated in both paediatric (≥6 years) and adult patients^{91,92}. However, to date, scintigraphy in children is less widely used than in adults since it is not widely available, is more expensive than a radiopaque marker transit test, and normative values in the paediatric population are lacking. CTT can also be calculated by tracking the movement of a radiation-free wireless motility capsule. A limitation for its use in children is that it requires a relatively large capsule to be swallowed93 and only one study has shown its feasibility in children with upper gastrointestinal complaints94. This device is currently predominantly used in adults in the academic setting, where it seems to provide results comparable to radiopaque markers93,95.

If the diagnosis of functional constipation is unclear in children presenting with faecal incontinence, CTT can be used to discriminate between faecal incontinence associated with functional constipation and that caused by functional nonretentive faecal incontinence 96,97.

In both children and adults, a delayed CTT indicates slow-transit constipation 98,99. However, (segmental) colonic slow transit can also result from withholding behaviour in children 100 and from rectal evacuation disorders in adults 101. Regional CTT (that is, the measurement of transit in specific colonic segments) has been used to differentiate between evacuation disorders and slow-transit constipation 102, but a 2017 study could not confirm these findings and showed that regional CTT

could not be used to exclude evacuation disorders in adults with chronic constipation¹⁰³. Therefore, the use of the marker transit method to differentiate rectal evacuation disorder from slow-transit constipation is not recommended; further tests such as the balloon expulsion test or anorectal manometry are needed. It is hypothesized that faecal impaction might delay colonic motility, making it challenging to differentiate between slow-transit constipation and an evacuation disorder^{27,104,105}; however, the limited evidence on the effect of routine bowel cleansing on CTT results remain contradictory.

Anorectal manometry. Anorectal manometry, which provides information about the neuromuscular function of the rectum and anal sphincter complex, is the most commonly performed motility test in young children presenting with constipation. In children, the test is often used to exclude Hirschsprung disease by assessing the presence of the recto-anal inhibitory reflex²⁷. The test is indicated in infants with early onset of symptoms, delayed passage of meconium and a positive family history of Hirschsprung disease (BOX 2). However, children with a high suspicion of Hirschsprung disease should instead be referred for rectal suction biopsy. Parameters measured by anorectal manometry considered to be helpful in adults and children with constipation are resting pressure, squeeze pressure, rectal sensation and recto-anal inhibitory reflex (TABLE 2). In adults, the most common indication for anorectal manometry is to provide information on the anal sphincter pressure and defaecation technique in order to exclude dyssynergic defaecation⁵³. The main drawback of the use of anorectal manometry for evaluating defaecation dynamics in children is that patients need to be awake and cooperative during the test. In young children, anorectal manometry is sometimes performed with the use of sedation or general anaesthesia. However, some anaesthetics can substantially reduce the anal resting pressure, which alters the test results106. Anorectal manometry is only performed in specialized centres, usually in an academic setting.

Colonic manometry. Interpretation of colonic manometry includes the evaluation of the presence and characteristics of HAPCs after a meal or after chemical stimuli (for example, stimulant laxatives)107. Although mostly performed in children in an academic setting, colonic manometry is a useful tool in both children and adults with intractable constipation to exclude neuromuscular motility disorders of the colon associated with slow-transit constipation 108,109. Colonic manometry can be used in children and adults to identify colonic motility disorders and to evaluate the extent of colonic dysmotility, which can have consequences for medical and surgical management 107,110. Owing to ethical concerns, normative data in the paediatric age group are lacking, complicating the interpretation of manometry studies in children. Furthermore, colonic manometry still remains an invasive test that is only performed in specialized clinics and hospitals, with wide variations in study protocols between centres111.

Box 2 | Alarm symptoms of constipation

Alarm symptoms in children

- History
- Delayed passage of meconium
- Early onset (<1 month old)
- Positive family history for Hirschsprung disease, coeliac disease or hypothyroidism
- Blood in the stools
- Ribbon stools
- Fever
- Bilious vomiting
- Physical examination
- Failure to thrive
- Severe abdominal distention
- Abnormal anal or cremasteric reflex
- Abnormal position of anus or gluteal cleft
- Extreme fear of anal exam
- Scars on anus
- Anal fissures or haematoma
- Abnormal neurological exam
- Hair tuft on spine
- Sacral dimple
- Abnormal thyroid gland
- Eczema

Alarm symptoms in adults

- History
- Change in bowel habits
- Unexplained iron deficiency anaemia
- Recent sudden onset of symptoms
- Blood in the stools
- Unintentional weight loss
- Family history of colon cancer or inflammatory bowel disease
- Rectal tenesmus
- Physical examination
- Abdominal or rectal mass
- Cachexia
- laundice
- Lymphadenopathy
- Abnormal thyroid gland

Contrast enema. Contrast studies of the colon can be useful to exclude anatomical abnormalities such as masses, megacolon and megarectum in both children and adults. In paediatric patients with severe refractory symptoms this test is sometimes used to guide surgical interventions by providing information on the anatomy and colonic length and dilatation¹¹².

Colonoscopy. Endoscopy is not recommended in the investigation of children with functional constipation⁸³. In adults, routine colonoscopy is not warranted and should only be considered in patients with alarm symptoms that could indicate malignancy (for example, sudden change of bowel habits, bloody stools, unexpected weight loss, family history of colon cancer or inflammatory bowel disease, and unexplained anaemia) and those who are not up to date with colon cancer screening after the onset of constipation⁵².

Balloon expulsion test. The balloon expulsion test is a reliable method to screen for pelvic floor dyssynergia in adults. This test is not commonly performed in young

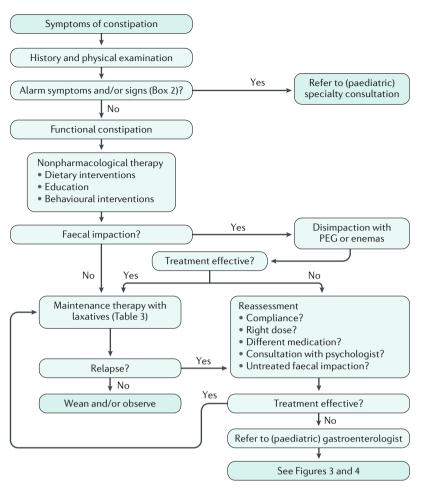


Fig. 2 | **Algorithm for initial presentation of symptoms of constipation.** A suggested stepwise approach for the evaluation and treatment of children and adults presenting with constipation. PEG, polyethylene glycol. Modified with permission from REF.⁷⁹, Wiley-VCH, and REF.²⁷ (Tabbers, M. M. *et al.* Evaluation and treatment of functional constipation in infants and children: Evidence-based recommendations from ESPGHAN and NASPGHAN. *J. Pediatr. Gastroenterol. Nutr.* **58**, 258–274, 2014), Wolters Kluwer.

children (that is, <5 years of age)¹¹³ because it requires a high level of cooperation by the patient¹¹⁴. In adults, a 40- to 50-ml balloon is normally evacuated in less than 60 s (REF.¹¹⁵).

Defaecography. Defaecography is indicated in adults when the results of anorectal manometry and rectal balloon testing are inconsistent with clinical symptoms¹¹⁶. Defaecography is seldom performed in children as it requires patient cooperation and because of the large exposure to radiation. Defaecography includes imaging of the anorectum and attempted defaecation after infusing barium contrast into the rectum. This test provides dynamic information on pelvic floor function and assessment of the effectiveness of rectal evacuation⁵². Moreover, the test is also used to identify anatomical abnormalities such as rectocele, enterocele and (uterovaginal) prolapses and to follow up on surgical corrections of such abnormalities¹¹⁶. MRI defaecography is an alternative to defaecography and provides more detailed information on anorectal function during defaecation without the disadvantage of radiation. This test is usually avoided in younger children because it requires children to lie still for several minutes and can involve sedation; also, it is not widely available 116.

Management

In both children and adults, nonpharmacological management is the first step in the treatment of functional constipation. This step includes education and lifestyle adjustments such as dietary recommendations, regular physical activity and advice on toileting posture and behaviour. An overview of the management of functional constipation in children and adults is provided^{27,79} (FIGS 2,3,4).

Dietary interventions

Dietary recommendations, including the need for a normal fibre and fluid intake, are the first interventions in the treatment of constipation. According to the recommendations of the ESPGHAN/NASPGHAN guidelines for children with functional constipation, an increase in fibre intake above the normal requirements is not beneficial, so a normal intake of fibre is advised²⁷. Most children and adults fail to meet the daily fibre recommendations (0.5 g/kg per day for children aged >5 years¹¹⁷, and 14 g per 1,000 kcal in adults¹¹⁸); however, so fibre intake should be addressed 119,120. Two systematic reviews in adults with functional constipation reporting on the efficacy of fibre supplementation found that fibre supplementation showed beneficial effects over placebo or no treatment and is therefore recommended121,122.

Prebiotics and probiotics (for example *Bifidobacterium* and *Lactobacillus* species) have been suggested as a potential treatment modality for functional constipation and have been reported to have a positive effect on colonic transit and defaecation frequency^{123,124}. However, owing to the large heterogeneity in studies and lack of randomized controlled trials, several systematic reviews including multiple studies in children and adults found limited evidence for the role of prebiotics and probiotics in the treatment of functional constipation^{125–130}.

A diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (a FODMAP diet), which restricts the intake of poorly absorbable carbohydrates, has been found to be helpful in adults and children with IBS¹³¹; however, no data are yet available on the effect of such a diet in patients with functional constipation. Furthermore, this diet has limitations for its use, particularly in the paediatric population, owing to the risk of dietary deficiencies and difficulties with dietary adherence¹³².

Education and behavioural therapy

Counselling of children and parents is crucial in the treatment of childhood constipation, including education about the role of withholding behaviour and the concept of overflow incontinence. A structured toilettraining programme with a reward system, instructing the child to attempt to defaecate at least two or three times daily (after each meal), has been found to prevent the occurrence of faecal impaction and to decrease the risk of faecal incontinence¹³³. For children, parental

 ${\sf Table}\ 2\ |\ \textbf{Parameters}\ \textbf{measured}\ \textbf{by}\ \textbf{anorectal}\ \textbf{manometry}\ \textbf{in}\ \textbf{patients}\ \textbf{with}\ \textbf{constipation}$

	•	·
Parameter	Children	Adults
Resting pressure	High resting anal sphincter pressure (>90 mmHg) is highly suggestive of hypertonic sphincter and withholding behaviour	If performed correctly with a cooperative patient, high resting anal sphincter pressure (>90 mmHg) and highly negative anorectal pressure differential (more negative than -50 mmHg) could be suggestive of rectal evacuation disorder
Squeeze pressure	Only performed when cooperative	High squeeze sphincter pressure can be caused by concurrent anal fissure
Rectal sensation	Only performed when cooperative; reduced rectal sensation is most often a result of megarectum owing to prolonged faecal retention secondary to withholding behaviour	Reduced rectal sensation in most patients presenting with constipation (rather than faecal incontinence) is most often a result of megarectum owing to prolonged faecal retention secondary to a rectal evacuation disorder; ideally, rectal hyposensitivity should be confirmed with rectal barostat procedure
Recto-anal inhibitory reflex	The most common reason for an absent recto-anal inhibitory reflex is Hirschsprung disease	The most common reason for an absent recto-anal inhibitory reflex is megarectum

child-rearing attitudes towards faecal incontinence, such as frustration and overprotection, should be discussed as they can be associated with constipation⁷⁷. In children who also have behavioural problems, behavioural therapy should be considered¹³⁴.

In adolescents and adults, including the elderly, behavioural therapy is mainly focused on restoring the mechanisms of normal defaecation and is recommended in patients with functional constipation caused by dyssynergic defaecation⁵². In such adults, behaviour modifications such as taking time to defaecate and promptly responding to the urge to defaecate are needed to prevent impairment of rectal sensation and function.

Biofeedback training and physiotherapy are interventions aimed at gaining better control over the pelvic floor muscles that have a role in the process of defaecation. Biofeedback training is not routinely recommended in young children with functional constipation owing to insufficient evidence, partly because of the heterogeneity between studies in children 135. A randomized controlled trial (RCT) including 53 children suggested that pelvic floor physiotherapy in addition to standard medical therapy is more successful in the treatment of functional constipation than is standard medical therapy alone 136. However, more research is necessary to confirm these promising findings.

In adults and adolescents, biofeedback training is beneficial in patients with functional constipation and dyssynergic defaecation¹³⁷. Several RCTs have demonstrated that in adults with constipation biofeedback therapy is superior to placebo or standard treatment approaches including diet, education and laxatives^{138–140}. In the elderly population in particular, sensory training in patients with abnormalities of rectal sensation is beneficial and can help to facilitate stooling¹³⁷.

Pharmacological interventions

Pharmacological treatment of children with functional constipation involves two steps: faecal disimpaction followed by maintenance therapy. Faecal disimpaction can be achieved with high-dose oral polyethylene glycol (PEG) or enemas containing active ingredients

such as sodium phosphate, sodium lauryl sulfoacetate or sodium ducosate. Both options are equally effective in children; however, not all children tolerate rectal enemas and the oral route is, therefore, recommended in this population, despite high-dose PEG being associated with an increased risk of faecal incontinence²⁷. After successful disimpaction, maintenance therapy is advised to prevent repeat accumulation of stools. Faecal disimpaction is less often required in adults, but the approaches are similar and commonly used oral treatments include large doses of PEG or magnesium citrate. Alternatives to enemas in children and adults are suppositories containing glycerine or bisacodyl.

Osmotic laxatives are the first-choice maintenance therapy recommended for functional constipation^{27,52}. PEG is the osmotic agent of choice for both children and adults owing to its effectiveness and perceived safety^{141,142}. Safety issues with respect to the long-term use of PEG in children have, however, now been raised owing to reports of associated behavioural problems and the detection of potential neurotoxins (ethylene glycol and diethylene glycol) in PEG 3350 (REF.¹⁴¹). Investigating these concerns, a 2018 study found no sustained elevated blood levels of these neurotoxins in children who received daily PEG 3350 compared with healthy individuals as controls¹⁴³. The FDA is currently still investigating these potential safety issues, but stated that no action is currently required based on the available data.

Other frequently used laxatives are mineral oil (alubricant) and milk of magnesia (magnesium hydroxide). If symptoms persist, stimulant laxatives such as bisacodyl or senna are recommended in clinical guidelines in both children and adults^{27,52}. The pharmacological agents most commonly used for the treatment of functional constipation are listed in TABLE 3.

Health care professionals report adherence to therapy as one of the most challenging aspects of treating children and adults with functional constipation¹⁴⁴. A cross-sectional survey study of 115 children treated with PEG showed that only 37% of patients were compliant with therapy¹⁴⁵. Even among those who adhere to treatment,

some will remain symptomatic. A systematic review reported that 40% of children treated for functional constipation were still symptomatic after 6–12 months of treatment ¹⁴⁶. Long-term follow-up studies (median follow-up of 11 years) show that 25% of children still experience symptoms of constipation as adults ¹³ and many continue to have severe symptoms ¹⁴. Long-term follow-up studies in adults with functional constipation are lacking, but more than half of adult patients report to be dissatisfied with their current treatment owing to lack of efficacy and adverse effects ^{147–149}. Thus, novel pharmacological treatments for functional constipation are needed.

New pharmacological interventions

Over the past few years, several new therapeutic agents have been proposed and some approved for the management of functional constipation.

These novel drugs show promise in the treatment of functional constipation, but as pharmacokinetics and pharmacodynamics might differ between children and adults owing to differences in physiology and mechanisms of drug clearance¹⁵⁰, extrapolation of data regarding safety and efficacy generated from adults to the paediatric

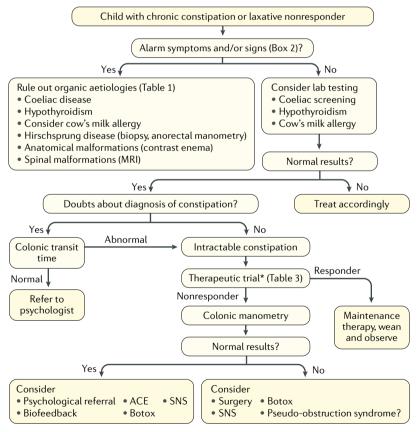


Fig. 3 | Algorithm for children referred to a paediatric gastroenterologist with chronic functional constipation. A suggested stepwise approach for the evaluation and management of children with chronic functional constipation who do not respond to conventional strategies. ACE, antegrade continence enema; SNS, sacral nerve stimulation. *Assess compliance and dosage, use of other medication and combination therapy. Modified with permission from REF.⁷⁹, Wiley-VCH, and REF.²⁷ (Tabbers, M. M. et al. Evaluation and treatment of functional constipation in infants and children: Evidence-based recommendations from ESPGHAN and NASPGHAN. *J. Pediatr. Gastroenterol. Nutr.* **58**, 258–274, 2014), Wolters Kluwer.

population requires great care. Outcome measures can differ widely between studies in paediatric and adult populations. For example, faecal incontinence is usually an important endpoint in paediatric studies, whereas the occurrence of this symptom is negligible in adults with functional constipation. Moreover, the lack of highquality placebo-controlled RCTs, especially in the paediatric population, make it challenging to explore the benefits of these newer treatment strategies. The costs of these novel drugs, in comparison with the relatively inexpensive available agents, should also be taken into account. More comparative studies, including cost-effect analyses, between the relatively new and expensive agents and the available conventional laxatives are needed to elucidate their role in clinical practice. Recommendations for the design of future clinical trials are provided elsewhere¹⁵¹.

Prosecretory agents. Prosecretory agents such as lubiprostone, linaclotide and plecanatide modulate epithelial channels in the gut, promoting the intestinal secretion of fluids and enhancing stool volume, resulting in an improvement in gastrointestinal transit¹⁵².

Lubiprostone induces intestinal fluid secretion by activating the CIC-2 chloride channel and cystic fibrosis transmembrane conductance regulator^{153,154}. Multiple RCTs in adults with functional constipation have shown that this drug is safe and increases bowel movement frequency¹⁵⁵⁻¹⁵⁸. Only one study in the paediatric population has been published — an open label noncontrolled study showing that 4 weeks of treatment with lubiprostone resulted in increased defaecation frequency in 127 children with functional constipation¹⁵⁹. However, in early findings (published in abstract form) from a double-blind, placebo-controlled, multicentre study, 12 weeks of treatment with lubiprostone in children with functional constipation did not result in a statistically significant improvement in bowel movement frequency (to more than three times per week) over control treatment (placebo). Lubiprostone was safe and well tolerated and had statistically significant beneficial effects on secondary outcome points, such as straining, stool consistency and pain during defaecation 160,161.

Linaclotide promotes intestinal fluid secretion by activating the guanylate cyclase C receptor. It improves defaecation frequency in adults with functional constipation and is approved for use in the United States and Europe^{162,163}. Plecanatide is a new guanylate cyclase C receptor agonist approved in the United States that is well tolerated in adults^{164,165}. A double-blind phase III RCT in adults with functional constipation showed that 12 weeks of plecanatide was associated with a substantial improvement in bowel movement frequency, stool consistency and abdominal symptoms compared with placebo¹⁶⁶. The most frequently reported adverse effects were diarrhoea and urinary tract infections^{164,166}. No data are available on the use of linaclotide and plecanatide in the paediatric population.

Serotonergic agents. A number of 5-hydroxytryptamine 4 (5-HT $_4$) agonists have been developed to treat functional constipation. Serotonin (5-HT) is a central and enteric neurotransmitter that binds to the 5-HT $_4$

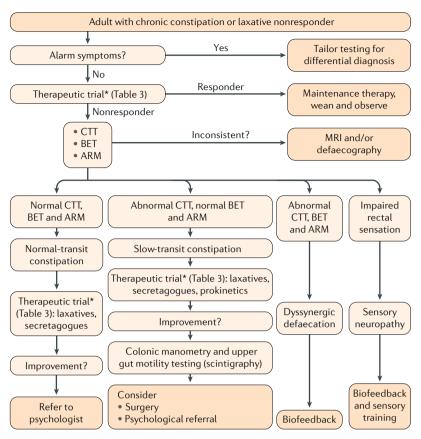


Fig. 4 | Algorithm for adults referred to a gastroenterologist with chronic functional constipation. A suggested stepwise approach for the evaluation and management of adults with chronic functional constipation who do not respond to conventional strategies. ARM, anorectal manometry; BET, balloon expulsion test; CTT, colonic transit time. *Assess compliance and dosage, use of other medication and combination therapy. Modified with permission from REF.⁷⁹, Wiley-VCH, and REF.²⁷ (Tabbers, M. M. *et al.* Evaluation and treatment of functional constipation in infants and children: Evidence-based recommendations from ESPGHAN and NASPGHAN. *J. Pediatr. Gastroenterol. Nutr.* **58**, 258–274, 2014), Wolters Kluwer.

receptors in the gut, increasing the release of acetylcholine and resulting in an increased secretion and gut motility¹⁶⁷. Moreover, serotonin also increases motility by initiating the gastrocolic reflex by stimulating the afferent nerves in the mucosa¹⁶⁸.

Prucalopride is a highly selective serotonin 5-HT₄ receptor agonist which functions as a prokinetic agent. In adults with functional constipation, prucalopride has been reported to be tolerable and safe without the occurrence of cardiovascular adverse effects 169,170, which were reported after use of other prokinetic agents such as cisapride and tegaserod^{171,172}. In a 2016 systematic review including multiple RCTs, prucalopride successfully increased the number of bowel movements per week in adults with chronic functional constipation¹⁷³. Only two published studies have evaluated the effect of prucalopride in children with functional constipation and the results have been less successful. One open-label, nonplacebo-controlled study showed that prucalopride was associated with an improvement in defaecation frequency, stool consistency and faecal incontinence frequency in 37 children with functional constipation after 8 weeks of treatment¹⁷⁴. However, a placebo-controlled

RCT in 213 children with functional constipation did not find a statistically significant improvement in bowel movement and frequency of faecal incontinence ¹⁷⁵. It is conceivable that this result reflects the high prevalence of stool withholding in children with functional constipation; a prokinetic drug would not be expected to overcome withholding behaviour. This finding is also consistent with the observation that prucalopride was not superior to PEG 3350 in a study in adults with functional constipation who had dominant symptoms consistent with rectal evacuation disorders (98% showed straining \geq 25% of the time, >95% had a sense of incomplete rectal evacuation \geq 25% of the time, >50% had a sense of anal blockage on \geq 25% of defaecations, and >15% performing manual disimpaction in \geq 25% of defaecations)

Velusetrag and narona pride are selective 5-HT $_4$ receptor agonists not yet approved by the FDA that have been shown to increase bowel movement frequency in a dults with chronic constipation in phase II studies 177,178 . No published studies have investigated the use of these agents in children.

Bile acids. Endogenous deconjugated bile salts increase fluid secretion and colonic motility. Normally, bile salts are reabsorbed into the small intestine via the apical ileal bile acid transporter and ~5% pass into the colon where they are deconjugated and dehydroxylated. Chenodeoxycholic acid, a primary bile acid, was shown to be effective in improving stool consistency in adults with IBS179. In children with functional constipation, Hofmann et al. 180 showed an altered faecal chenodeoxycholic acid profile, suggesting a possible role of bile acids in the pathophysiology of functional constipation but, to date, no studies on the use of bile acids have been performed in children with functional constipation. Elobixibat, an ileal bile acid transporter inhibitor, has been shown to increase defaecation frequency and accelerate CTT in several phase III studies in adults with functional constipation 181-183. Two large, multicentre phase III trials, ECHO 1 and ECHO 2, were terminated early because of a distribution issue with the trial medication. Moreover, long-term safety issues concerning a theoretical risk of colorectal cancer owing to increased bile acid concentration exposure needs to be investigated, although currently available evidence is reassuring¹⁸⁴. Paediatric studies of elobixibat are yet to be performed.

Cholinesterase inhibitors. Acetylcholinesterase inhibitors such as pyridostigmine increase gastrointestinal motility by increasing the availability of acetylcholine. Pyridostigmine has been used for the treatment of small cohorts of adults with severe slow-transit constipation^{185,186}. One published case series of pyridostigmine in four children with gastrointestinal motility disorders suggested a beneficial effect on defaecation frequency in one patient with chronic constipation¹⁸⁷.

Transanal irrigation

Transanal irrigation is a treatment typically used in children with functional constipation who are unresponsive to pharmacological treatment¹⁸⁸. During transanal

Table 3 Pharmacol	ogical agents for childhood a	nd adult functional constipat	ion	
Drug	Evidence	Adverse events	Dosage in children	Dosage in adults
Osmotic laxatives				
Lactulose	Improvement of symptoms of mild to moderate constipation; safe to use in pregnancy and young children	Abdominal gas, bloating and cramping	7 months to 18 years: 1–2 g/kg per day in 1–2 doses	12–24 g per day
Polyethylene glycol without electrolytes: PEG 4000	Improves consistency and frequency of stools, and straining	Diarrhoea and abdominal distention	Maintenance: 0.3–0.8 g/kg per day; disimpaction: 1–1.5 g/kg per day (for maximum of 7 days)	Maintenance: 10–20 g per day; disimpaction: 80 g per day (for maximum of 3 days)
Polyethylene glycol with electrolytes: PEG 3350	Improves consistency and frequency of stools, and straining	Diarrhoea and abdominal distention	Maintenance: 0.3–0.8 g/kg per day; disimpaction: 1–1.5 g/kg per day (for maximum of 7 days)	Maintenance: 10–20 g per day; disimpaction: 80 g per day (for maximum of 3 days)
Milk of magnesia (magnesium hydroxide)	Evidence of efficacy is poor	Diarrhoea; excessive use, particularly in elderly patients and those with renal insufficiency, might lead to electrolyte disturbances	2–5 years: 0.4–1.2 g per day; 6–11 years: 1.2–2.4 g per day; 12–18 years: 2.4–4.8 g per day	2–5 g per day
Lubricants				
Mineral oil (liquid paraffin)	Evidence supports efficacy of mineral oil, but quality of studies is poor	Skin irritation and reduced absorption of fat-soluble vitamins; be vigilant for lipid pneumonitis with aspiration if ingested in reclined body position	1–3 ml/kg per day (maximum 90 ml per day	15–45 ml per day
Stimulant laxatives				
Bisacodyl (diphenylmethane)	Evidence supports effect on improvement of symptoms	Diarrhoea and abdominal pain	3–10 years: 5 mg per day in 1 dose before bedtime; >10 years: 5–10 mg per day in 1 dose before bedtime	5–10 mg per day in 1 dose in the evening
Sodium picosulfate (diphenylmethane)	Evidence supports effect on improvement of symptoms	Diarrhoea and abdominal pain	4–5 years: 3 mg; >6 years: 4–6 mg per day in 1 dose	4–6 mg per day in 1 dose
Senna (anthraquinone)	Clinical experience suggests that senna is effective and well tolerated, but no large randomized trials have been performed	Diarrhoea and abdominal pain; in young children, senna could induce dermatitis	2-6 years: 2.5-5 mg/day in 1-2 doses; 6-12 years: 7.5-10 mg/day in 1-2 doses; >12 years: 15-20 mg/day in 1-2 doses	185–370 mg per day
Prosecretory agents				
Lubiprostone	Limited evidence in children; improvement of stool frequency and consistency, and reduced straining and bloating in adults	Nausea	Off-label use	24μg twice daily
Linaclotide	Limited evidence in children; improvement of stool frequency and consistency in adults	Diarrhoea	Off-label use	145–290 μg per day
Plecanatide	Limited evidence in children; improvement of symptoms in adults	Diarrhoea	Off-label use	3–6 mg per day
Serotonergic agents				
Prucalopride	Limited evidence in children; improvement of stool frequency, consistency and straining in adults	Headache, nausea, diarrhoea and abdominal pain	Off-label use	1–2 mg per day
Rectal laxatives				
Bisacodyl	Evidence supports beneficial effect on faecal impaction	Abdominal pain and anal discomfort	3–10 years: 5 mg per day in 1 dose before bedtime; >10 years: 5–10 mg per day in 1 dose before bedtime	5–10 mg per day in 1 dose in the evening

Table 3 (cont.) | Pharmacological agents for childhood and adult functional constipation

Drug	Evidence	Adverse events	Dosage in children	Dosage in adults	
Rectal laxatives (cont.)					
Sodium phosphate	Evidence supports beneficial effect on faecal impaction	Water and electrolyte disturbances, especially in young children and elderly; do not use in patients with suspicion of Hirschsprung disease	2.5 ml/kg (maximum of 133 ml per dose)	133 ml per dose	
Sodium docusate	Evidence supports effect on faecal impaction	Abdominal pain and anal discomfort	<6 years: 60 ml; >6 years: 120 ml	120 ml	
Sodium lauryl sulfoacetate	Evidence supports effect on faecal impaction	Abdominal pain and anal discomfort	1 month to 1 year: 2.5 ml/dose (=0.5 enema); 1–18 years: 5 ml/dose (=1 enema)	5 ml/dose (=1 enema)	

irrigation, a catheter or cone is inserted into the rectum to infuse water, thereby flushing the colon, resulting in a thorough clean out. Transanal colonic irrigation is well established for use in patients with neurogenic bowel disorders and anorectal malformations^{189,190}. Data on the efficacy of transanal irrigation in patients with a functional aetiology of constipation is limited. In paediatric cohort studies, including small populations of children with functional constipation, transanal irrigation has been suggested to be effective in the treatment of faecal incontinence and constipation symptoms^{191–194} and high parental satisfaction has been reported¹⁹⁵.

Similar results have been described in adults with functional constipation. A study that surveyed 102 adults with functional constipation showed that patients perceived the use of transanal irrigation as effective and safe¹⁹⁶. Thus, when lifestyle and medical strategies fail, transanal irrigation should be considered as a valuable therapeutic alternative for children and adults with functional constipation.

Surgical interventions

Surgery for functional constipation is regarded as a therapy of last resort and is only considered when maximal conventional therapies have failed and symptoms are greatly disrupting quality of life^{27,52}. To date, surgical approaches differ widely between physicians¹¹¹. Generally, a step-up approach is used to decide between the different surgical procedures, beginning with the strategy that is least invasive. A systematic review summarizing current surgical strategies for children has been published elsewhere¹⁹⁷. In adults, the steps in the algorithms leading to consideration of laparoscopic colectomy with ileorectostomy have been summarized elsewhere¹⁹⁸, including in a consensus guideline from Canada¹⁹⁹.

Antegrade continence enemas. Antegrade continence enemas (ACEs) can be used to achieve antegrade colonic irrigation. ACEs enable flushing of fluids with or without added laxatives through an external opening into the colonic lumen. The most commonly utilized procedures to establish an ACE are the percutaneous cecostomy and the Malone appendicocecostomy. ACE surgery is considered minimally invasive and good clinical outcomes have been reported in children¹⁹⁷. Although it has been suggested that patients with colonic dysmotility had

lower success rates than patients without colonic dysmotility^{200,201} after ACE, King et al.²⁰² showed that ACEs were successful in 81% of 42 children with slow-transit constipation. By comparison, reported success rates in adults with functional constipation are much lower. Two studies in adults with functional constipation reported a success rate of 42% and 50%, respectively^{203,204}. Moreover, in adults, stoma stenosis is common in patients who have undergone ACE surgery and patients often require further surgical revision²⁰⁵.

Ostomies and resection. When minimally invasive surgical therapies fail in children and adults (that is, in cases of intractable functional constipation), ileostomy, colostomy or total colectomy are considered. However, the decision regarding the type of surgical procedure to perform remains challenging and differs widely between centres. Colonic manometry is sometimes used before surgery to identify colonic inertia and to determine the extent of colonic dysmotility^{108,206,207}. Results of manometry can help in guiding the extent of colonic resection. Moreover, motility testing can discriminate between patients who would benefit from a colostomy (short, distal segment) and those who need an ileostomy (long colonic segment) and can be valuable in deciding the need for and timing of diversion^{206,208,209}.

In children, the decision regarding surgery type is often based on the presence of dysmotility and colonic dilation based on manometry and contrast enema results²⁰⁵. In the presence of a megarectum or megasigmoid, a rectosigmoid resection has been shown to be effective in children²⁰⁵. Children with colonic dysmotility or slow-transit constipation can benefit from a total or subtotal colectomy, sometimes in combination with an ACE^{52,210}. A study involving 37 children with intractable functional constipation who were treated with either ileostomy, colostomy, sigmoid resection or subtotal colectomy at a single centre reported a high postoperative parental satisfaction rate of 91%²¹¹.

In adults, surgical options are available for patients with slow-transit constipation or evacuation disorders but published evidence is limited^{212–215}. Adults with normal-transit functional constipation are less likely than those with slow-transit constipation or evacuation disorders to benefit from surgery, and diagnosis of the

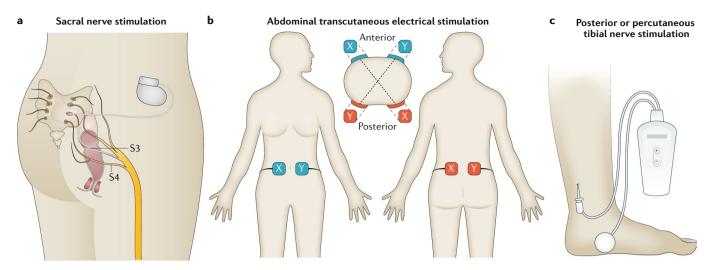


Fig. 5 | Different methods of neuromodulation for functional constipation. a | Sacral nerve stimulation involves the subcutaneous placement of a stimulator device with a lead into the sacral foramen, stimulating the sacral nerves S3 and S4. b | Abdominal transcutaneous electrical stimulation includes stimulation of electrode pads applied across the skin of the abdomen and lower back. c | Posterior or percutaneous tibial nerve stimulation involves (bilateral) stimulation of the posterior tibial nerve by inserting a needle electrode at the level of the medial malleolus, indirectly stimulating the sacral nerves. Panel a adapted from REF.²⁵³, Springer Nature Limited. Panel b adapted with permission from REF.²⁵⁴, Elsevier.

correct subtype of functional constipation is therefore crucial for the surgical management of adults with constipation. In adults with slow-transit constipation who do not have dyssynergic defaecation, a colectomy might be useful when the functional constipation is refractory to all nonsurgical treatment^{205,213}. Success rates of 50-100% after total abdominal colectomy in adults with ileorectal anastomosis have been described²¹⁶. Unfortunately, a wide variation in the definition of success (satisfaction, patient report, symptoms, and so forth) was used in these studies. A systematic review showed high satisfaction rates of 86% in adults with slow-transit constipation after a colectomy procedure²¹⁷. Upper gastrointestinal motility disorders in patients with intractable constipation can negatively influence outcomes after the colectomy procedure and should therefore be ruled out218.

For adults with pelvic floor dyssynergia who are unresponsive to conservative therapy, therapies to improve dyssynergia such as biofeedback should be considered before subtotal colectomy. In adults with rectal anatomical abnormalities (for example, prolapse or rectocele), repair of the outlet obstruction is recommended²¹⁶. An ileostomy should be considered as a last resort⁵².

Neuromodulation

Over the past two decades, developments have resulted in the growing use of neuromodulation as a viable treatment strategy for patients with intractable functional constipation. Available strategies of neuromodulation include sacral nerve stimulation (SNS), abdominal transcutaneous electrical stimulation (TES) and posterior or percutaneous tibial nerve stimulation (PTNS) (FIG. 5). SNS involves the subcutaneous placement of a stimulator device with a lead into the sacral foramen, stimulating the sacral nerves S3 and S4 (FIG. 5a). The

efficacy of SNS on both urinary and faecal incontinence in paediatric and adult patients is well established^{219–223}, but its mechanism of action and role in the treatment of constipation symptoms is less clear^{221,224}. SNS is hypothesized to be effective because of its influence on anorectal function at a peripheral and central level²²⁵. Small cohort studies in children with functional constipation have shown promising effects of SNS on defaecation frequency^{226,227}. A long-term follow-up study in children with heterogeneous aetiologies of constipation showed no statistically significant improvement in defaecation frequency after 2 years of SNS treatment; however, faecal incontinence rates decreased from 72% to 20%²²⁸.

In adults, SNS for functional constipation has been available for a longer period, but results have been conflicting. Several studies have shown its efficacy in improving defaecation frequency in patients with normal-transit functional constipation, slow-transit functional constipation and rectal evacuation disorders^{229–233}. Furthermore, one long-term study in adults with functional constipation showed that improvement in bowel movement frequency and sensation of incomplete emptying was sustained at over 60 months of follow-up²³⁴. However, results of an RCT comparing SNS with sham stimulation in adults with slow-transit constipation showed no benefit of SNS over sham stimulation on defaecation frequency after 3 weeks, 1 year and 2 years of follow-up^{235,236}.

Although SNS is considered a minimally invasive surgical procedure, high rates of device-related adverse events have been reported including pain, haematoma, infection, and displacements of the leads, sometimes requiring surgical revision²³⁷. SNS remains a specialized and expensive procedure and more prospective studies with long-term follow-up are needed to provide

a better assessment of the efficacy and safety of SNS as a treatment for constipation.

Abdominal TES and PTNS use noninvasive or minimally invasive methods of stimulation. TES involves stimulation of electrode pads applied across the skin of the abdomen and lower back (FIG. 5b). The stimulation is usually performed by trained physiotherapists, but is now available in a home-based setting²³⁸. In an RCT comparing 4 weeks of TES with 4 weeks of sham stimulation in children with slow-transit constipation, CTT and quality of life scores improved substantially, but defaecation frequency did not improve^{239,240}. Colonic manometry studies showed an increase in HAPCs after 2 months and 7 months of TES in eight children with slow-transit constipation²⁴¹. One long-term follow-up study found that 33% of children with slow-transit constipation had statistically significant improvement in bowel movement consistency and faecal incontinence after 2 years of treatment with TES²⁴². A randomized study comparing 4 weeks of TES with 4 weeks of sham TES in adults with slow-transit constipation showed that defaecation frequency significantly increased (from 3.71 per week at baseline to 5.64 per week after 4 weeks of treatment, P < 0.05) with TES treatment²⁴³.

PTNS involves (bilateral) stimulation of the posterior tibial nerve by inserting a needle electrode at the level of the medial malleolus (FIG. 5c), indirectly stimulating the sacral nerves. Findings from studies investigating PTNS in children with faecal and urinary incontinence 244,245 and adults with constipation $^{246-249}$ remain conflicting and this treatment modality is currently reserved for the academic setting. Future studies are needed to determine the efficacy of these treatment modalities on functional constipation.

Future therapies

Novel alternative therapies including acupuncture and faecal microbiota transplantation have been suggested to show potential for the treatment of adults with functional constipation. However, current guidelines do not yet support the use of these treatments in the management of functional constipation and more studies are needed.

Acupuncture. Several Chinese studies have been published on the use of acupuncture for adults with chronic constipation ²⁵⁰. A randomized, parallel, sham-controlled study of 1,075 adults with functional constipation showed major improvements in spontaneous bowel movement frequency (an increase of 1.76 bowel movements per week, 95% CI 1.61–1.89) in the acupuncture group compared with the control group after 8 weeks of treatment²⁵¹. Long-term follow-up of these patients was not included in this study.

Faecal microbiota transplantation. Owing to possible alterations in the gut microbiota in patients with functional constipation, faecal microbiota transplantation (that is, the administration of faecal bacteria from a healthy donor into the intestinal tract of a recipient) has been suggested as a possible therapy for constipation. One study showed promising short-term

improvements in defaecation frequency, CTT and quality of life in 52 adults with slow-transit constipation. However, after 12 weeks of therapy these effects were no longer seen²⁵².

Conclusions

Functional constipation is highly prevalent in children and adults. Many predisposing factors, including lifestyle and psychological abnormalities, are similar in children and adults, but there are important pathophysiological differences. Children with functional constipation often have symptoms of faecal incontinence, and childhood functional constipation usually results from withholding behaviour. Therefore, in children, there is little need for additional diagnostic testing. Parental influences and behavioural disorders are predisposing factors and children often benefit from family-based strategies including a structured toilet-training programme and behavioural interventions. By contrast, adults with functional constipation present with infrequent and hard bowel movements and less often report symptoms of incontinence. In adults, additional testing is often indicated to identify underlying disorders and to establish a diagnosis of normal-transit constipation, slow-transit constipation or pelvic floor dysfunction, which has therapeutic consequences.

The first-choice therapies for both children and adults with functional constipation include lifestyle interventions and osmotic laxatives. However, some patients do not benefit from these drugs, partly because of low compliance rates. New pharmacological interventions that target the pathophysiology of functional constipation have been well investigated in adults; however, data in children are limited and contradictory. Several types of neuromodulation strategies have shown promise in functional constipation. If conventional management fails, surgery might be beneficial. To date, no clear guidelines exist on the surgical management of functional constipation and procedures vary widely between children and adults.

Differences in response to conventional strategies such as biofeedback therapy and pharmacotherapy, and different surgical outcomes after neuromodulation and ACE surgery, suggest that childhood functional constipation is a different entity from adult functional constipation. Comparing findings from clinical trials between children and adults with functional constipation is challenging owing to age-related differences in drug pharmacokinetics and pharmacodynamics, differences in paediatric and adult Rome IV criteria, and differences in primary endpoints in studies (such as the component of faecal incontinence in children but not in adults). High-quality placebo-controlled RCTs with uniform diagnostic criteria are needed to explore the benefits of new treatment strategies for children and adults with intractable constipation. Finally, long-term follow-up studies are needed to improve our understanding of the prognosis and disease course of functional constipation.

Published online: 05 November 2019

REVIEWS

- Benninga, M. A. et al. Childhood functional gastrointestinal disorders: neonate/toddler. Gastroenterology **150**, 1443–1455 (2016).
- Hyams, J. S. et al. Childhood functional gastrointestinal disorders: child/adolescent Gastroenterology 150, 1456-1468 (2016)
- Lacv. B. E. et al. Bowel disorders. Gastroenterologu **150**, 1393–1407 (2016).
- Wald, E. R. et al. Bowel habits and toilet training in a diverse population of children. J. Pediatr. Gastroenterol. Nutr. 48, 294–298 (2009). Burgers, R. E. et al. Management of functional
- constipation in children with lower urinary tract symptoms: report from the Standardization Committee of the International Children's Continence Society. J. Urol. 190, 29–36 (2013).
 Chan, A. O. et al. Familial aggregation in constipated
- subjects in a tertiary referral center. *Am. J. Gastroenterol.* **102**, 149–152 (2007).
- Nurko, S. & Scott, S. M. Coexistence of constipation and incontinence in children and adults. *Best Pract. Res. Clin. Gastroenterol* **25**, 29–41 (2011). Nurko, S. & Saps, M. Treating constipation
- with prucalopride: one size does not fit all. Gastroenterology 147, 1214-1216 (2014).
- 9. Stivland, T. et al. Scintigraphic measurement of regional gut transit in idiopathic constipation. Gastroenterology **101**, 107–115 (1991).
- Nullens, S. et al. Regional colon transit in patients with dys-synergic defaecation or slow transit in patients with constipation. Gut 61, 1132-1139 (2012).
- Koppen, I. J. N. et al. Prevalence of functional defecation disorders in children: a systematic review and meta-analysis. *J. Pediatr.* **198**, 121–130 (2018).
- Mugie, S. M., Benninga, M. A. & Di Lorenzo, C. Epidemiology of constipation in children and adults: a systematic review. Best Pract. Res. Clin. Gastroenterol. 25, 3-18 (2011).
- Bongers, M. E. J., van Wijk, M. P., Reitsma, J. B. & Benninga, M. A. Long-term prognosis for childhood constipation: clinical outcomes in adulthood.

 Pediatrics 126, 156–162 (2010).

 van Ginkel, R. et al. Childhood constipation: longitudinal
- follow-up beyond puberty. Gastroenterology 125, 357-363 (2003).
- Suares, N. C. & Ford, A. C. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: systematic review and meta-analysis. *Am. J. Gastroenterol.* **106**, 1582–1591 (2011).
- Camilleri, M., Cowen, T. & Koch, T. R. Enteric neurodegeneration in ageing. Neurogastroenterol. Motil. 20, 185-196 (2008).
- Broad, J. et al. Changes in neuromuscular structure and functions of human colon during ageing are region-dependent. Gut 68, 1210–1223 (2019).
- Loening-Baucke, V. Chronic constipation in children. Gastroenterology 105, 1557-1564 (1993).
- Mounsey, A., Raleigh, M. & Wilson, A. Management of constipation in older adults. *Am. Fam. Physician* **92**, 500–504 (2015).
- Keuzenkamp-Jansen, C. W., Fijnvandraat, C. J., Kneepkens C. M. F. & Douwes, A. C. Chronic
- constipation. *Arch. Dis. Child.* 36–41 (1996).

 21. Dehghani, S. M., Moravej, H., Rajaei, E. & Javaherizadeh, H. Evaluation of familial aggregation, vegetable consumption, legumes consumption, and physical activity on functional constipation in families of children with functional constipation versus children without constipation. Prz. Gastroenterol. 10, 89–93 (2015).
- Chan, A. O. O. et al. Influence of positive family history on clinical characteristics of functional constipation
- Clin. Gastroenterol. Hepatol. 5, 197–200 (2007). Chang, J. Y., Locke, G. R., Schleck, C. D., Zinsmeister, A. R. & Talley, N. J. Lack of familial aggregation in chronic constipation excluding irritable bowel syndrome: a population-based study. Dig. Dis. Sci. **60**, 1358–1365 (2015).
- Benninga, M. A., Voskuijl, W. P. & Taminiau, J. A. Childhood constipation: is there new light in the tunnel? J. Pediatr. Gastroenterol. Nutr. 39, 448-464
- Miceli Sopo, S., Arena, R., Greco, M., Bergamini, M. & Monaco, S. Constipation and cow's milk allergy: a review of the literature. Int. Arch. Allergy Immunol. 164, 40-45 (2014).
- Iacono, G., Scalici, C. & Iacono, S. Chronic constipation as a symptom of food allergy. Austin J. Allergy 3, 1024 (2016).
- Tabbers, M. M. et al. Evaluation and treatment of functional constipation in infants and children evidence-based recommendations from ESPGHAN

- and NASPGHAN. J. Pediatr. Gastroenterol. Nutr. 58, 258-274 (2014).
- Roma, E., Adamidis, D., Nikolara, R., Constantopoulos, A. & Messaritakis, J. Diet and chronic constipation in children: the role of fiber. J. Pediatr. Gastroenterol Nutr. 28, 169-174 (1999).
- Bouras, E. P. & Tangalos, E. G. Chronic constipation in the elderly. Gastroenterol. Clin. North Am. 38, 463-480 (2009).
- Youssef, N. N., Sanders, L. & Di Lorenzo, C. Adolescent constipation: evaluation and management. Adolesc. Med. Clin. 15, 37-52 (2004).
- Koppen, I. J. N. et al. Functional defecation disorders and excessive body weight: a systematic review. Pediatrics 138, e20161417 (2016).
- Eslick, G. D. Gastrointestinal symptoms and obesity: a meta-analysis. *Obes. Rev.* **13**, 469–479 (2012).
- Sileri, P. et al. Prevalence of defaecatory disorders in morbidly obese patients before and after bariatric surgery. J. Gastrointest. Surg. 16, 62-67 (2012).
- Poylin, V. et al. Obesity and bariatric surgery: a systematic review of associations with defecatory dysfunction. *Colorectal Dis.* **13**, e92–e103 (2011).
- Ramalingam, K. & Monga, A. Obesity and pelvic floor dysfunction. Best Pract. Res. Clin. Obstet. Gynaecol. 29, 541-547 (2015).
- Seidenfaden, S., Ormarsson, O. T., Lund, S. H. & Bjornsson, E. S. Physical activity may decrease the likelihood of children developing constipation. Acta Paediatr. 107, 151-155 (2018).
- Rajindrajith, S., Devanarayana, N. M., Perera, B. J. C. & Benninga, M. A. Childhood constipation as an emerging public health problem. *World J. Gastroenterol.* **22**, 6864–6875 (2016).
- Iovino, P. et al. New onset of constipation during longterm physical inactivity: a proof-of-concept study on the immobility-induced bowel changes. PLOS ONE 8,
- e72608 (2013). de Meii, T. G. J. et al. Characterization of microbiota in children with chronic functional constipation. PLOS ONE 11, e0164731 (2016).
- Mancabelli, L. et al. Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses. Sci. Rep. **7**, 9879 (2017).
- Husebye, E., Hellström, P. M., Sundler, F., Chen, J. & Midtvedt, T. Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G368-G380 (2001).
- Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science
- **291**, 881–884 (2001). Rao, S. S. C., Sadeghi, P., Beaty, J. & Kavlock, R. Ambulatory 24-hour colonic manometry in slowtransit constipation. Am. J. Gastroenterol. 99, 2405-2416 (2004).
- van den Berg, $\dot{\text{M}}$. $\dot{\text{M}}$. et al. Colonic manometry as predictor of cecostomy success in children with defecation disorders. *J. Pediatr. Surg.* **41**, 730–736 (2006).
- Dinning, P. G. et al. Colonic motor abnormalities in slow transit constipation defined by high resolution fibre-optic manometry. Neurogastroenterol. Motil. 27, 379–388 (2015).
- Wessel, S. et al. Characterizing colonic motility in children with chronic intractable constipation: a look beyond high-amplitude propagating sequences. Neurogastroenterol. Motil. 28, 743–757 (2016). Dinning, P. G., Benninga, M. A., Southwell, B. R. &
- Mark Scott, S. Paediatric and adult colonic manometry: a tool to help unravel the pathophysiology of constipation. World J. Gastroenterol. 16, 5162-5172 (2010)
- Dinning, P. G. A new understanding of the physiology and pathophysiology of colonic motility? Neurogastroenterol. Motil. 30, e13395 (2018).
- Corsetti, M. et al. Pan-colonic pressurizations associated with relaxation of the anal sphincter in health and disease: a new colonic motor pattern identified using high-resolution manometry. Am. J. Gastroenterol. 112, 479–489 (2017).
- Lin, A. Y., Dinning, P. G., Milne, T., Bissett, I. P. & O'Grady, G. The "rectosigmoid brake": review of an emerging neuromodulation target for colorectal functional disorders. Clin. Exp. Pharmacol. Physiol. 44, 719-728 (2017).
- Rao, S. S. C. & Patcharatrakul, T. Diagnosis and treatment of dyssynergic defecation. *J. Neurogastroenterol. Motil.* **22**, 423–435 (2016).
- Bharucha, A. E., Pemberton, J. H. & Locke, G. R. American Gastroenterological Association technical

- review on constipation. Gastroenterology 144, 218-238 (2013).
- Rao, S. S. C. et al. Anorectal disorders. Gastroenterology 150, 1430–1442 (2016).
- Ranasinghe, N., Devanarayana, N. M., Benninga, M. A., Van Dijk, M. & Rajindrajith, S. Psychological maladjustment and quality of life in adolescents with constipation. *Arch. Dis. Child.* **102**, 268–273 (2017).
- Philips, E. M. et al. Stressful life events in children with functional defecation disorders. J. Pediatr.
- Gastroenterol. Nutr. **61**, 384–392 (2015). Joinson, C., Grzeda, M. T., von Gontard, A. & Heron, J. Psychosocial risks for constipation and soiling in primary school children. Eur. Child. Adolesc Psychiatry 28, 203-210 (2018).
- Mason, H. J., Serrano-Ikkos, E. & Kamm, M. A. Psychological morbidity in women with idiopathic constipation. Am. J. Gastroenterol. 95, 2852–2857 (2000).
- McKeown, C., Hisle-Gorman, E., Eide, M., Gorman, G. H. incontinence with attention-deficit/hyperactivity disorder. *Pediatrics* **132**, e1210–e1215 (2013)
- Peeters, B., Noens, I., Philips, E. M., Kuppens, S. & Benninga, M. A. Autism spectrum disorders in children with functional defecation disorders. *J. Pediatr.* **163**, 873–878 (2013).
- van Diik, M., Benninga, M. A., Grootenhuis, M. A. & Last, B. F. Prevalence and associated clinical characteristics of behavior problems in constipated children. Pediatrics 125, 309-317 (2010).
- Haug, T. T., Mykletun, A. & Dahl, A. A. Are anxiety and depression related to gastrointestinal symptoms in the general population? Scand. J. Gastroenterol. 37, 294–298 (2002).
- Dykes, S., Smilgin-Humphreys, S. & Bass, C. Chronic idiopathic constipation: a psychological enquiry. Eur. J. Gastroenterol. Hepatol. 13, 39–44 (2001). Rajindrajith, S., Devanarayana, N. M. & Benninga, M. A.
- Fecal incontinence in adolescents is associated with child abuse, somatization, and poor health-related quality of life. J. Pediatr. Gastroenterol. Nutr. 62, 698-703 (2016).
- Rajindrajith, S., Devanarayana, N. M. & Benninga, M. A. Constipation-associated and nonretentive fecal incontinence in children and adolescents: an epidemiological survey in Sri Lanka. *J. Pediatr. Gastroenterol. Nutr.* **51**, 472–476 (2010). Koch, T. & Hudson, S. Older people and laxative use:
- literature review and pilot study report. J. Clin. Nurs. 9, 516-525 (2000).
- Carabotti, M., Scirocco, A., Maselli, M. A. & Severi, C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28, 203–209 (2015).
- Mugie, S. M. et al. Brain processing of rectal sensation in adolescents with functional defecation disorders and healthy controls. Neurogastroenterol. Motil. 30, e13228 (2018).
- Zhu, Q. et al. Distinct resting-state brain activity in patients with functional constipation. Neurosci. Lett. **632**, 141–146 (2016).
- Malowitz, S., Green, M., Karpinski, A., Rosenberg, A. & Hyman, P. E. Age of onset of functional constipation. J. Pediatr. Gastroenterol. Nutr. 62, 600-602 (2016).
- Loening-Baucke, V. Constipation in early childhood: patient characteristics, treatment, and long-term
- follow up. *Gut* **34**, 1400–1404 (1993).
 Benninga, M. A., Voskuiji, W. P. & Taminiau, J. A. J. M.
 Childhood constipation: is there new light in the tunnel? J. Pediatr. Gastroenterol. Nutr. 39, 448-464 (2004).
- van der Plas, R. et al. Biofeedback training in
- treatment of childhood constipation: a randomised controlled study. *Lancet* **348**, 776–780 (1996). Rao, S. S. C., Mudipalli, R. S., Stessman, M. & Zimmerman, B. Investigation of the utility of colorectal function tests and Rome II criteria in dyssynergic defecation (Anismus). *Neurogastroenterol. Motil.* **16**, 589–596 (2004). Loening-Baucke, V. Biofeedback treatment for chronic
- constipation and encopresis in childhood: long-term outcome. Pediatrics 96, 105-110 (1995).
- Borowitz, S. M. et al. Precipitants of constipation during early childhood. J. Am. Board Fam. Pract. 16, 213-218 (2002).
- Scott, S. M., Van Den Berg, M. M. & Benninga, M. A. Rectal sensorimotor dysfunction in constipation. Best Pract. Res. Clin. Gastroenterol 25, 103-118 (2011).
- van Dijk, M., de Vries, G.-J., Last, B. F., Benninga, M. A. & Grootenhuis, M. A. Parental child-rearing attitudes are associated with functional constipation in childhood. Arch. Dis. Child. 100, 329-333 (2015).

- Peeters, B. et al. Parental characteristics and functional constipation in children: a cross-sectional cohort study. BMJ Paediatr. Open 1, e000100 (2017).
- Rao, S. S. C. Yamada's Textbook of Gastroenterology 6th edn Vol. 2 (Wiley-Blackwell, 2016).
- Tantiphlachiva, K., Rao, P., Attaluri, A. & Rao, S. S. C. Digital rectal examination is a useful tool for identifying patients with dyssynergia. *Clin. Gastroenterol. Hepatol.* 8, 955–960 (2010).
- Chedid, V., Vijayvargiya, P., Halawi, H., Park, S. & Camilleri, M. Audit of the diagnosis of rectal evacuation disorders in chronic constipation. *Neurogastroenterol. Motil.* 31, e13510 (2019).
- Chogle, A. & Saps, M. Yield and cost of performing screening tests for constipation in children. Can. J. Gastroenterol. 27, e35–e38 (2013).
- National Institute for Health and Care Excellence.
 Constipation in children and young people: diagnosis and management (NICE, 2010).
- National Institute for Health and Care Excellence.
 Coeliac disease: recognition, assessment and management (NICE, 2015).
- Kearney, R., Edwards, T., Bradford, M. & Klein, E. Emergency provider use of plain radiographs in the evaluation of pediatric constipation. *Pediatr. Emerg.* Care 35, 624–629 (2018).
- Care 35, 624–629 (2018).

 86. Berger, M. Y., Tabbers, M. M., Kurver, M. J., Boluyt, N. & Benninga, M. A. Value of abdominal radiography, colonic transit time, and rectal ultrasound scanning in the diagnosis of idiopathic constipation in children: a systematic review. *J. Pediatr.* 161, 44–50 (2012).
- Linet, M. S., Kim, K. P. & Rajaraman, P. Children's exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations. *Pediatr. Radiol.* 39, S4–S26 (2009).
- Park, S.-Y., Khemani, D., Nelson, A. D., Eckert, D. & Camilleri, M. Rectal gas volume measured by computerized tomography identifies evacuation disorders in patients with constipation. *Clin. Gastroenterol. Hepatol.* 15, 543–552 (2017).
- Park, S.-Y., Khemani, D., Acosta, A., Eckert, D. & Camilleri, M. Rectal gas volume: defining cut-offs for screening for evacuation disorders in patients with constipation. *Neurogastroenterol. Motil.* 29, e13044 (2017)
- Krevsky, B., Malmud, L. S., D'Ercole, F., Maurer, A. H. & Fisher, R. S. Colonic transit scintigraphy. A physiologic approach to the quantitative measurement of colonic transit in humans. *Gastroenterology* 91, 1102–12 (1986).
- Manabe, N. et al. Lower functional gastrointestinal disorders: evidence of abnormal colonic transit in a 287 patient cohort. Neurogastroenterol. Motil. 22, 293-e82 (2010).
- Mugie, S. M. et al. Colonic manometry and colonic scintigraphy as a diagnostic tool for children with severe constipation. *J. Pediatr. Gastroenterol. Nutr.* 57, 598–602 (2013).
- Camilleri, M. et al. Wireless pH-motility capsule for colonic transit: prospective comparison with radiopaque markers in chronic constipation. *Neurogastroenterol. Motil.* 22, 874–882, e233 (2010).
- Green, A. D. et al. Wireless motility capsule test in children with upper gastrointestinal symptoms. J. Pediatr. 162, 1181–1187 (2013).
- Rao, S. S. C. et al. Investigation of colonic and whole-gut transit with wireless motility capsule and radiopaque markers in constipation. *Clin. Gastroenterol. Hepatol.* 7, 537–544 (2009).
- Koppen, I. J. N. et al. Management of functional nonretentive fecal incontinence in children: recommendations from the International Children's Continence Society. J. Pediatr. Urol. 12, 56–64 (2016).
- Benninga, M. A., Buller, H. A., Heymans, H. S. A., Tytgat, G. N. J. & Taminiau, J. A. J. M. Is encopresis always the result of constipation? *Arch. Dis. Child.* 71, 186–193 (1994).
- De Lorijn, F. et al. Prognosis of constipation: clinical factors and colonic transit time. Arch. Dis. Child. 89, 723–727 (2004).
- Degen, L. P. & Phillips, S. F. How well does stool form reflect colonic transit? *Gut* 39, 109–113 (1996).
 Keshtgar, A. S., Ward, H. C. & Clayden, G. S.
- Pathophysiology of chronic childhood constipation: functional and morphological evaluation by anorectal manometry and endosonography and colonic transit study. *J. Pediatr. Surg.* **48**, 806–812 (2013).
- Shin, A. et al. Interpretation of overall colonic transit in defecation disorders in males and females. Neurogastroenterol. Motil. 25, 502–508 (2013).

- 102. Nullens, S. et al. Regional colon transit in patients with dys-synergic defaecation or slow transit in patients with constipation. *Gut* 61, 1132–1139 (2012).
- 103. Park, S.-Y., Burton, D., Busciglio, I., Eckert, D. & Camilleri, M. Regional colonic transit pattern does not conclusively identify evacuation disorders in constipated patients with delayed colonic transit. J. Neurogastroenterol. Motil. 23, 92–100 (2017).
- 104. Sloots, C. E. J. & Felt-Bersma, R. J. F. Effect of bowel cleansing on colonic transit in constipation due to slow transit or evacuation disorder. *Neurogastroenterol. Matil.* 14, 55–61 (2002).
- Quitadamo, P. et al. Effect of bowel cleansing on colonic transit time measurement in children with chronic constipation. *J. Pediatr.* 167, 1440–1442 (2015).
- 106. Tran, K. et al. Effect of propofol on anal sphincter pressure during anorectal manometry. *J. Pediatr. Gastroenterol. Nutr.* 58, 495–497 (2014).
- 107. Rodriguez, L., Sood, M., Di Lorenzo, C. & Saps, M. An ANMS-NASPGHAN consensus document on anorectal and colonic manometry in children. *Neuroagstroenterol. Matil.* 29, e12944 (2017).
- 108. Rao, S. S. C., Sadeghi, P., Beaty, J. & Kavlock, R. Ambulatory 24-hour colonic manometry in slowtransit constipation. *Am. J. Gastroenterol.* 99, 2405–2416 (2004).
- 109. Hagger, R., Kumar, D., Benson, M. & Grundy, A. Colonic motor activity in slow-transit idiopathic constipation as identified by 24-h pancolonic ambulatory manometry. *Neurogastroenterol. Motil.* 15, 515–522 (2003).
- Camilleri, M. et al. American Neurogastroenterology and Motility Society consensus statement on intraluminal measurement of gastrointestinal and colonic motility in clinical practice. *Neurogastroenterol. Motil.* 20, 1269–1282 (2008).
- 111. Koppen, I. J. N. et al. Surgical decision-making in the management of children with intractable functional constipation: what are we doing and are we doing it right? J. Pediatr. Surg. 51, 1607–1612 (2016).
- 112. Levitt, M. A., Martin, C. A., Falcone, R. A. & Peña, A. Transanal rectosigmoid resection for severe intractable idiopathic constipation. *J. Pediatr. Surg.* 44, 1285–1291 (2009).
- Loening-Baucke, V. Factors determining outcome in children with chronic constipation and faecal soiling. *Gut* 30, 999–1006 (1989).
- 114. Belkind-Gerson, J., Goldstein, A. M. & Kuo, B. Balloon expulsion test as a screen for outlet obstruction in children with chronic constipation. J. Pediatr. Gastroenterol. Nutr. 56, 23–26 (2013).
- Minguez, M. et al. Predictive value of the balloon expulsion test for excluding the diagnosis of pelvic floor dyssynergia in constipation. *Gastroenterology* 126, 57–62 (2004).
- 116. Wald, A., Bharucha, A. E., Cosman, B. C. & Whitehead, W. E. ACG clinical guideline: management of benign anorectal disorders. Am. J. Gastroenterol. 109, 1141–1157 (2014).
- 117. Williams, C. L., Bollella, M. & Wynder, E. L. A new recommendation for dietary fiber in childhood. *Pediatrics* 96, 985–988 (1995).
- ODPHP. 2015-2020 Dietary Guidelines for Americans.
 (2015). Available at: http://health.gov/dietaryguidelines/ 2015/guidelines/. (Accessed: August 2019)
- 119. Fayet-Moore, F., Cassettari, T., Tuck, K., McConnell, A. & Petocz, P. Dietary fibre intake in Australia. Paper I: Associations with demographic, socio-economic, and anthropometric factors. *Nutrients* 10, 599 (2018).
- 120. Kranz, S., Brauchla, M., Slavin, J. L. & Miller, K. B. What do we know about dietary fiber intake in children and health? The effects of fiber intake on constipation, obesity, and diabetes in children. Adv. Nutr. 3, 47–53 (2012).
- Suares, N. C. & Ford, A. C. Systematic review: the effects of fibre in the management of chronic idiopathic constipation. *Aliment. Pharmacol. Ther.* 33, 895–901 (2011).
- 122. Rao, S. S. C., Yu, S. & Fedewa, A. Systematic review: dietary fibre and FODMAP-restricted diet in the management of constipation and irritable bowel syndrome. *Aliment. Pharmacol. Ther.* 41, 1256–1270 (2015).
- Choi, C. H. & Chang, S. K. Alteration of gut microbiota and efficacy of probiotics in functional constipation. J. Neurogastroenterol. Motil. 21, 004–007 (2015).
- 124. Castillejo, G., Bullo, M., Anguera, A., Escribano, J. & Salas-Salvado, J. A controlled, randomized, double-blind trial to evaluate the effect of a supplement of cocoa husk that is rich in dietary fiber on colonic

- transit in constipated pediatric patients. *Pediatrics* **118**, e641–e648 (2006).
- 125. Miller, L. E., Ouwehand, A. C. & Ibarra, A. Effects of probiotic-containing products on stool frequency and intestinal transit in constipated adults: systematic review and meta-analysis of randomized controlled trials. Ann. Gastroenterol. 30, 629–639 (2017).
- 126. Korterink, J. J. et al. Probiotics for childhood functional gastrointestinal disorders: a systematic review and meta-analysis. *Acta Paediatr.* 103, 365–372 (2014).
 127. Chmielewska. A. & Szaiewska. H. Systematic review of
- Chmielewska, A. & Szajewska, H. Systematic review of randomised controlled trials: probiotics for functional constipation. World J. Gastroenterol. 16, 69–75 (2010).
- Tabbers, M. M. & Benninga, M. A. Constipation in children: fibre and probiotics. *BMJ Clin. Evid.* 2015, 0303 (2015).
- Huang, R. & Hu, J. Positive effect of probiotics on constipation in children: a systematic review and metaanalysis of six randomized controlled trials. Front. Cell. Infect. Microbiol. 7, 153 (2017).
- 130. Koppen, I. J. N., Benninga, M. Á. & Tabbers, M. M. Is there a role for pre-, pro- and synbiotics in the treatment of functional constipation in children? A systematic review. J. Pediatr. Gastroenterol. Nutr. 63, S27–S35 (2016).
- 131. Pourmand, H. & Esmaillzadeh, A. Consumption of a low fermentable oligo-, di-, mono-saccharides, and polyols diet and irritable bowel syndrome: a systematic review. *Int. J. Prev. Med.* 8, 104 (2017).
- 132. Hill, P., Muir, J. G. & Gibson, P. R. Controversies and recent developments of the low-FODMAP diet. *Gastroenterol. Hepatol.* 13, 36–45 (2017).
- 133. Van Der Plas, R. N., Benninga, M. A., Taminiau, J. A. J. M. & Büller, H. A. Treatment of defaecation problems in children: the role of education, demystification and toilet training. Eur. J. Pediatr. 156, 689–692 (1997).
 134. van Dijk, M. et al. Behavioral therapy for childhood
- 134. van Dijk, M. et al. Behavioral therapy for childhood constipation: a randomized, controlled trial. *Pediatrics* 121, e1334–e1341 (2008).
- 135. Brazzelli, M. & Griffiths, P. V. Behavioural and cognitive interventions with or without other treatments for the management of faecal incontinence in children. *Cochrane Database Syst. Rev.* 2, CD002240 (2006).
- 136. van Engelenburg-van Lonkhuyzen, M. L., Bols, E. M. J., Benninga, M. A., Verwijs, W. A. & de Bie, R. A. Effectiveness of pelvic physiotherapy in children with functional constipation compared with standard medical care. *Gastroenterology* 152, 82–91 (2017).
- Rao, S. S. C. et al. ANMS-ESNM position paper and consensus guidelines on biofeedback therapy for anorectal disorders. *Neurogastroenterol. Motil.* 27, 594–609 (2015).
- 138. Chiarioni, G., Whitehead, W. E., Pezza, V., Morelli, A. & Bassotti, G. Biofeedback is superior to laxatives for normal transit constipation due to pelvic floor dyssynergia. *Castroenterology* **130**, 657–664 (2006).
 139. Heymen, S. et al. Randomized, controlled trial shows
- Heymen, S. et al. Kandomized, controlled trial snows biofeedback to be superior to alternative treatments for patients with pelvic floor dyssynergia-type constipation. *Dis. Colon Rectum* **50**, 428–441 (2007).
- 140. Rao, S. S. C. et al. Randomized controlled trial of biofeedback, sham feedback, and standard therapy for dyssynergic defecation. *Clin. Gastroenterol. Hepatol.* 5, 331–338 (2007).
- Koppen, I. J. N. et al. Role of polyethylene glycol in the treatment of functional constipation in children. J. Pediatr. Gastroenterol. Nutr. 65, 361–363 (2017).
- 142. DiPalma, J. A., Cleveland, M. vB., McGowan, J. & Herrera, J. L. A randomized, multicenter, placebocontrolled trial of polyethylene glycol laxative for chronic treatment of chronic constipation. *Am. J. Gastroenterol.* 102, 1436–1441 (2007).
 143. Williams, K. C., Rogers, L. K., Hill, I., Barnard, J.
- 143. Williams, K. C., Rogers, L. K., Hill, I., Barnard, J. & Di Lorenzo, C. PEG 3350 administration is not associated with sustained elevation of glycol levels. J. Pediatr. 195, 148–153 (2018).
- 144. Harris, L. A., Horn, J., Kissous-Hunt, M., Magnus, L. & Quigley, E. M. M. The better understanding and recognition of the disconnects, experiences, and needs of patients with chronic idiopathic constipation (BURDEN-CIC) study: results of an online questionnaire. Adv. Ther. 34, 2661–2673 (2017).
 145. Koppen, I. J. N., van Wassenaer, E. A., Barendsen, R. W.,
- 145. Koppen, I. J. N., van Wassenaer, E. A., Barendsen, R. W. Brand, P. L. & Benninga, M. A. Adherence to polyethylene glycol treatment in children with functional constipation is associated with parental illness perceptions, satisfaction with treatment, and perceived treatment convenience. J. Pediatr. 199, 132–139 (2018).

REVIEWS

- 146. Pijpers, M. A. M., Bongers, M. E. J., Benninga, M. A. δ Berger, M. Y. Functional constinution in children: a systematic review on prognosis and predictive factors. J. Pediatr. Gastroenterol. Nutr. **50**, 256–268 (2010).
- 147. Johanson, J. F. & Kralstein, J. Chronic constipation: a survey of the patient perspective. *Aliment. Pharmacol. Ther.* **25**, 599–608 (2007).
- 148. Wald, A. et al. A multinational survey of prevalence and patterns of laxative use among adults with selfdefined constipation. Aliment. Pharmacol. Ther. 28, 917-930 (2008).
- 149. Wald, A. et al. Survey of laxative use by adults with self-defined constipation in South America and Asia: a comparison of six countries. Aliment. Pharmacol. Ther. 31, 274–284 (2010).
- 150. Batchelor, H. K. & Marriott, J. F. Paediatric pharmacokinetics: key considerations. *Br. J. Clin. Pharmacol.* **79**, 395–404 (2015).
- 151. Koppen, I. J. N. et al. Recommendations for pharmacological clinical trials in children with functional constipation: the Rome Foundation Pediatric Subcommittee on clinical trials Neurogastroenterol. Motil. 30, e13294 (2018).
- 152. Simrén, M. & Tack, J. New treatments and therapeutic targets for IBS and other functional bowel disorders Nat. Rev. Gastroenterol. Hepatol. 15, 589-605 (2018).
- 153. Bassil, A. K. et al. Activation of prostaglandin EP receptors by lubiprostone in rat and human stomach and colon. Br. J. Pharmacol. 154, 126-135 (2008).
- 154. Bijvelds, M. J. C., Bot, A. G. M., Escher, J. C. & De Jonge, H. R. Activation of intestinal CI- secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator. Gastroenterology 137, 976–985 (2009).
- 155. Barish, C. F., Drossman, D., Johanson, J. F. & Ueno, R. Efficacy and safety of lubiprostone in patients with chronic constipation. *Dig. Dis. Sci.* **55**, 1090–1097 (2010).
- 156. Johanson, J. F., Morton, D., Geenen, J. & Ueno, R. Multicenter, 4-week, double-blind, randomized placebo-controlled trial of lubiprostone, a locallyacting type-2 chloride channel activator, in patients with chronic constipation. Am. J. Gastroenterol. 103, 170-177 (2008).
- 157. Johanson, J. F. & Ueno, R. Lubiprostone, a locally acting chloride channel activator, in adult patients with chronic constipation: a double-blind, placebo-controlled, dose ranging study to evaluate efficacy and safety. *Aliment*. Pharmacol. Ther. 25, 1351-1361 (2007).
- 158. Fukudo, S., Hongo, M., Kaneko, H., Takano, M. & Ueno, R. Lubiprostone increases spontaneous bowel movement frequency and quality of life in patients with chronic idiopathic constipation. Clin. Gastroenterol. Hepatol. **13**, 294–301 (2015).
- 159. Hyman, P. E., Di Lorenzo, C., Prestridge, L. L. Youssef, N. N. & Ueno, R. Lubiprostone for the treatment of functional constipation in children. *J. Pediatr. Gastroenterol. Nutr.* **58**, 283–291 (2014).
- 160. Benninga, M. A. et al. Long-term open-label safety extension study assessing oral lubiprostone in children with pediatric functional constipation aged 6-17 years [abstract Su1664]. *Gastroenterology* **154**, S560 (2018).
- 161. Benninga, M. A. et al. Efficacy and safety of lubiprostone in children with functional constipation: a multicenter, randomized, placebo-controlled, doubleblind pivotal study [abstract Su1643]. *Gastroenterology* **154**, S559–S560 (2018).
- 162. Lembo, A. J. et al. Two randomized trials of linaclotide for chronic constipation. N. Engl. J. Med. **365**, 527-536 (2011).
- 163. McWilliams, V., Whiteside, G. & McKeage, K. Linaclotide: first global approval. Drugs 72 2167-2175 (2012).
- 164. Barish, C. F. & Griffin, P. Safety and tolerability of plecanatide in patients with chronic idiopathic constipation: long-term evidence from an open-label study. *Curr. Med. Res. Opin.* **34**, 751–755 (2018). 165. Shailubhai, K. et al. Plecanatide, an oral guanylate
- cyclase C agonist acting locally in the gastrointestinal tract, is safe and well-tolerated in single doses Dig. Dis. Sci. 58, 2580-2586 (2013).
- 166. Miner, P. B. et al. A randomized phase III clinical trial of plecanatide, a uroguanylin analog, in patients with chronic idiopathic constipation. *Am. J. Gastroenterol.* 112, 613-621 (2017).
- 167. Thomas, R. H. & Luthin, D. R. Current and emerging treatments for irritable bowel syndrome with constipation and chronic idiopathic constipation: focus on prosecretory agents. Pharmacotherapy 35, 613-630 (2015).

- 168. Cross-Adame, E. & Rao, S. S. Brain and gut interactions in irritable bowel syndrome: new paradigms and new understandings. *Curr. Gastroenterol. Rep.* **16**, 379
- 169. Mendzelevski, B. et al. Assessment of the cardiac safety of prucalopride in healthy volunteers: a randomized, double-blind, placebo- and positive controlled thorough QT study. Br. J. Clin. Pharmacol. 73, 203-209 (2012).
- 170. Camilleri, M. et al. Efficacy and safety of prucalopride in chronic constipation: an integrated analysis of six randomized, controlled clinical trials. Dig. Dis. Sci. 61, 2357-2372 (2016).
- 171. Aboumarzouk, O. M., Agarwal, T., Antakia, R., Shariff, U. & Nelson, R. L. Cisapride for intestinal constipation. Cochrane Database Syst. Rev. 1, CD007780 (2011).
- 172. US Food and Drug Administration. Joint meeting of the gastrointestinal drugs advisory committee and drug safety and risk management advisory committees (FDA, 2018).
- 173. Sajid, M. S., Hebbar, M., Baig, M. K., Li, A. & Philipose, Z. Use of prucalopride for chronic constipation: a systematic review and meta-analysis of published randomized, controlled trials. J. Neurogastroenterol. Motil. 22, 412–422 (2016).
- 174. Winter, H. S. et al. Oral prucalopride in children with functional constipation. *J. Pediatr. Gastroenterol.* Nutr. **57**, 197–203 (2013).
- 175. Mugie, S. M. et al. Prucalopride is no more effective than placebo for children with functional constipation. *Gastroenterology* **147**, 1285–1295 (2014).
- 176. Cinca, R., Chera, D., Gruss, H.-J. & Halphen, M. Randomised clinical trial: macrogol/PEG 3350+electrolytes versus prucalopride in the treatment of chronic constipation — a comparison in a controlled environment, Aliment, Pharmacol, Ther. 37.876-886 (2013).
- 177, Goldberg, M. et al. Clinical trial: the efficacy and tolerability of velusetrag, a selective 5-HT4 agonist with high intrinsic activity, in chronic idiopathic constipation — a 4-week, randomized, double-blind, placebo-controlled, dose-response study. *Aliment. Pharmacol. Ther.* **32**, 1102–1112 (2010).
- 178. Shin, A. et al. Systematic review with meta-analysis: highly selective 5-HT4 agonists (prucalopride, velusetrag or naronapride) in chronic constipation
- Aliment. Pharmacol. Ther. **39**, 239–253 (2014). 179. Rao, A. S. et al. Chenodeoxycholate in females with irritable bowel syndrome-constipation: a pharmacodynamic and pharmacogenetic analysis. Gastroenterology 139, 1549-1558 (2010).
- 180. Hofmann, A. F. et al. Altered bile acid metabolism in childhood functional constipation: inactivation of secretory bile acids by sulfation in a subset of patients. J. Pediatr. Gastroenterol. Nutr. 47, 598-606 (2008)
- 181. Simrén, M., Bajor, A., Gillberg, P. G., Rudling, M. & Abrahamsson, H. Randomised clinical trial: the ileal bile acid transporter inhibitor A3309 vs. placebo in patients with chronic idiopathic constipation — a double-blind study. Aliment. Pharmacol. Ther. 34, 41-50 (2011).
- 182. Wong, B. S. et al. Effects of A3309, an ileal bile acid transporter inhibitor, on colonic transit and symptoms in females with functional constipation. *Am. J.* Gastroenterol. 106, 2154-2164 (2011).
- 183. Nakajima, A. et al. Safety and efficacy of elobixibat for chronic constipation: results from a randomised, double-blind, placebo-controlled, phase 3 trial and an open-label, single-arm, phase 3 trial. Lancet Gastroenterol. Hepatol. 3, 537–547 (2018).
- Acosta, A. & Camilleri, M. Elobixibat and its potential role in chronic idiopathic constipation. *Therap. Adv. Gastroenterol* **7**, 167–175 (2014).
- 185. Soufi-Afshar, I., Moghadamnia, A., Bijani, A., Kazemi, S. & Shokri-Shirvani, J. Comparison of pyridostigmine and bisacodyl in the treatment of refractory chronic constipation. Casp. J. Intern. Med. 7, 19-24 (2016)
- 186. O'Dea, C. J., Brookes, S. J. H. & Wattchow, D. A.
 The efficacy of treatment of patients with severe constipation or recurrent pseudo-obstruction with pyridostigmine. Colorectal Dis. 12, 540-548 (2009)
- 187. Manini, M. L., Camilleri, M., Grothe, R. & Di Lorenzo, C. Application of pyridostigmine in pediatric gastrointestinal motility disorders: a case series. *Pediatr. Drugs* **20**, 173–180 (2018).
- 188. Mosiello, G. et al. Consensus review of best practice of transanal irrigation in children. *J. Pediatr. Gastroenterol. Nutr.* **64**, 343–352 (2017).
- 189. Krogh, K. et al. Consensus review of best practice of transanal irrigation in adults. Spinal Cord 51, 732-738 (2013).

- 190. Mosiello, G. et al. Consensus review of best practice of transanal irrigation in children. J. Pediatr. Gastroenterol. Nutr. 64, 343-352 (2017).
- 191. Cazemier, M., Felt-Bersma, R. J. F. & Mulder, C. J. J. Anal plugs and retrograde colonic irrigation are helpful in fecal incontinence or constipation. *World J. Gastroenterol.* **13**, 3101–3105 (2007).
- 192. Chrzan, R., Klijn, A. J., Vijverberg, M. A. W., Sikkel, F. & de Jong, T. P. V. M. Colonic washout enemas for persistent constipation in children with recurrent urinary tract infections based on dysfunctional voiding. *Urology* **71**, 607–610 (2008).

 193. Nasher, O., Hill, R. E., Peeraully, R., Wright, A. &
- Singh, S. J. Peristeen® transanal irrigation system for paediatric faecal incontinence: a single centre experience. Int. J. Pediatr. 2014, 954315 (2014).
- 194. Ng, J. et al. Transanal irrigation for intractable faecal incontinence and constipation: outcomes, quality of life and predicting non-adopters. Pediatr. Surg. Int. 31, 729-734 (2015).
- 195. Koppen, I. J. N., Kuizenga-Wessel, S., Voogt, H. W., Voskeuil, M. E. & Benninga, M. A. Transanal irrigation in the treatment of children with intractable functional constipation. J. Pediatr. Gastroenterol. Nutr. 64, 225-229 (2017).
- 196. Etherson, K. J., Minty, I., Bain, I. M., Cundall, J. & Yiannakou, Y. Transanal irrigation for refractory chronic idiopathic constipation: patients perceive a safe and effective therapy. *Gastroenterol. Res. Pract.* 2017, 3826087 (2017).
- 197. Siminas, S. & Losty, P. D. Current surgical management of pediatric idiopathic constipation. *Ann. Surg.* **262**, 925–933 (2015).
- 198. Camilleri, M. et al. Chronic constipation. *Nat. Rev. Dis.* Primers 3, 17095 (2017).
- 199. Tse, Y. et al. Treatment algorithm for chronic idiopathic constipation and constipation-predominant irritable bowel syndrome derived from a Canadian national survey and needs assessment on choices of therapeutic agents. Can. J. Gastroenterol. Hepatol. **2017**, 8612189 (2017).
- Curry, J. I., Osborne, A. & Malone, P. S. How to achieve a successful Malone antegrade continence enema. *J. Pediatr. Surg.* 33, 138–141 (1998).
 Curry, J., Osborne, A. & Malone, P. S. The MACE
- procedure: experience in the United Kingdom
- J. Pediatr. Surg. 34, 338–340 (1999). 202. King, S. K., Sutcliffe, J. R., Southwell, B. R., Chait, P. G. & Hutson, J. M. The antegrade continence enema successfully treats idiopathic slow-transit constipation. J. Pediatr. Surg. **40**, 1935–1940 (2005). 203. Worsøe, J., Christensen, P., Krogh, K., Buntzen, S. &
- Laurberg, S. Long-term results of antegrade colonic enema in adult patients: assessment of functional results. Dis. Colon Rectum 51, 1523-1528 (2008)
- 204. Meurette, G., Lehur, P.-A., Coron, E. & Regenet, N. Long-term results of Malone's procedure with antegrade irrigation for severe chronic constipation. Gastroentérol. Clin. Biol. 34, 209–212 (2010).
- 205. Levitt, M. A., Mathis, K. L. & Pemberton, J. H. Surgical treatment for constipation in children and adults. Best Pract. Res. Clin. Gastroenterol 25, 167–179 (2011).
- 206. Villarreal, J. et al. Colonic diversion for intractable constipation in children: colonic manometry helps guide clinical decisions. J. Pediatr. Gastroenterol. Nutr. 33, 588-591 (2001).
- 207. Singh, S., Heady, S., Coss-Adame, E. & Rao, S. S. C. Clinical utility of colonic manometry in slow transit constipation. Neurogastroenterol. Motil. 25, 487-e367 (2013).
- $208.\ Martin,\ M.\ J.\ et\ al.\ A\ pilot\ study\ using\ total\ colonic$ manometry in the surgical evaluation of pediatric functional colonic obstruction. J. Pediatr. Surg. 39, 352-359 (2004).
- 209. Martin, M. J., Steele, S. R., Noel, J. M., Weichmann, D. & Azarow, K. S. Total colonic manometry as a guide for surgical management of functional colonic obstruction: preliminary results. J. Pediatr. Surg. 36, 1757-1763 (2001).
- 210. Eradi, B. et al. The role of a colon resection in combination with a Malone appendicostomy as part of a bowel management program for the treatment of fecal incontinence. *J. Pediatr. Surg.* **48**, 2296–2300
- 211. Kuizenga-Wessel, S. et al. Surgical management of children with intractable functional constipation; experience of a single tertiary children's hospital. *Neurogastroenterol. Motil.* **29**, e13005 (2017).
- 212. Knowles, C. H. et al. Surgery for constipation: systematic review and practice recommendations:

- Results I: Colonic resection. Colorectal Dis. 19 (Suppl. 3), 17–36 (2017).
- 213. Knowles, C. H. et al. Surgery for constipation: systematic review and practice recommendations. Graded practice and future research recommendations, Colorectal Dis. 19 (Suppl. 3). 101-113 (2017).
- 214. Grossi, U. et al. Surgery for constipation: systematic review and practice recommendations. Results II: Hitching procedures for the rectum (rectal suspension). Colorectal Dis. 19 (Suppl. 3), 37–48 (2017). 215. Grossi, U. et al. Surgery for constipation: systematic
- review and practice recommendations. Results IV: Recto-vaginal reinforcement procedures. Colorectal Dis. 19 (Suppl. 3), 73-91 (2017).
- 216. Paquette, I. M. et al. The American Society of Colon and Rectal Surgeons' clinical practice guideline for the evaluation and management of constipation. Dis. Colon Rectum **59**, 479–492 (2016).
- 217. Knowles, C. H., Scott, M. & Lunniss, P. J. Outcome of colectomy for slow transit constipation. Ann. Surg.
- **230**, 627–638 (1999). 218. Keller, J. et al. Expert consensus document: advances in the diagnosis and classification of gastric and intestinal motility disorders. Nat. Rev. Gastroenterol. Hepatol. 15, 291–308 (2018).
- 219. Schober, M. S. et al. Sacral nerve stimulation for pediatric lower urinary tract dysfunction; development of a standardized pathway with objective urodynamic outcomes. J. Urol. 194, 1721-1726 (2015).
- 220. Weil, E. H. et al. Sacral root neuromodulation in the treatment of refractory urinary urge incontinence a prospective randomized clinical trial. Eur. Urol. 37, 161-171 (2000).
- . Wexner, S. D. et al. Sacral nerve stimulation for fecal incontinence: results of a 120-patient prospective multicenter study. *Ann. Surg.* **251**, 441–449 (2010). 222. Sulkowski, J. P. et al. Sacral nerve stimulation:
- a promising therapy for fecal and urinary incontinence and constipation in children. J. Pediatr. Surg. 50, 1644–1647 (2015).
- 223. Goldman, H. B. et al. International Continence Society best practice statement for use of sacral neuromodulation. *Neurourol. Urodyn.* **37**, 1823-1848 (2018).
- 224. Thaha, M. A., Abukar, A. A., Thin, N. N., Ramsanahie, A. & Knowles, C. H. Sacral nerve stimulation for faecal incontinence and constipation in adults. *Cochrane Database Syst. Rev.* **8**, CD004464 (2015).
- 225. Carrington, E. V. et al. A systematic review of sacral nerve stimulation mechanisms in the treatment of fecal incontinence and constipation.

 Neurogastroenterol. Motil. 26, 1222–1237 (2014).
- 226. van der Wilt, A. A. et al. Sacral neuromodulation in children and adolescents with chronic constipation refractory to conservative treatment. Int. J. Colorectal Dis. 31, 1459-1466 (2016).
- 227. Van Wunnik, B. P. et al. Sacral neuromodulation therapy: a promising treatment for adolescents with refractory functional constipation. *Dis. Colon Rectum* **55**, 278-285 (2012).

- 228. Lu, P. L. et al. Sacral nerve stimulation for constipation and fecal incontinence in children: long-term outcomes, patient benefit, and parent satisfaction. Neurogastroenterol. Motil. 30, 1–7 (2018).
- 229. Kamm, M. A. et al. Sacral nerve stimulation for
- intractable constipation. *Gut* **59**, 333–340 (2010). 230. Kenefick, N. J., Nicholls, R. J., Cohen, R. G. & Kamm, M. A. Permanent sacral nerve stimulation for treatment of idiopathic constipation. Br. J. Surg. 89, 882-888 (2002).
- 231. Holzer, B. et al. Sacral nerve stimulation in patients with severe constipation. Dis. Colon Rectum 51. 524-530 (2008).
- 232. Malouf, A. J., Wiesel, P. H., Nicholls, T., Nicholls, R. J. & Kamm, M. A. Short-term effects of sacral nerve stimulation for idiopathic slow transit constipation. *World J. Surg.* **26**, 166–170 (2002).
- 233. Knowles, C. H. et al. Prospective randomized doubleblind study of temporary sacral nerve stimulation in patients with rectal evacuatory dysfunction and rectal hyposensitivity. Ann. Surg. **255**, 643–649 (2012).
- 234. Maeda, Y. et al. Long-term outcome of sacral neuromodulation for chronic refractory constipation. Tech. Coloproctol 21, 277–286 (2017).
- 235. Dinning, P. G. et al. Treatment efficacy of sacral nerve stimulation in slow transit constipation: a two-phase, double-blind randomized controlled crossover study. *Am. J. Gastroenterol.* **110**, 733–740 (2015).
- 236. Patton, V., Stewart, P., Lubowski, D. Z., Cook, I. J. & Dinning, P. G. Sacral nerve stimulation fails to offer long-term benefit in patients with slow-transit constipation. Dis. Colon Rectum 59, 878-885 (2016).
- 237. Lu. P. L. & Di Lorenzo, C. Neurostimulation of the gastrointestinal tract in children: is it time to shock the gut? Curr. Opin. Pediatr. 28, 631-637 (2016)
- 238. Yik, Y. I., Hutson, J. & Southwell, B. Home-based transabdominal interferential electrical stimulation for six months improves paediatric slow transit constipation (STC). *Neuromodulation* **21**, 676–681
- 239. Clarke, M. C. C., Chase, J. W., Gibb, S., Hutson, J. M. & Southwell, B. R. Improvement of quality of life in children with slow transit constipation after treatment with transcutaneous electrical stimulation. *J. Pediatr.*
- Surg. **44**, 1268–1273 (2009). 240. Clarke, M. C. C. et al. Decreased colonic transit time after transcutaneous interferential electrical stimulation in children with slow transit constipation. J. Pediatr. Surg. **44**, 408–412 (2009). 241. Clarke, M. C. C. et al. Transabdominal electrical
- stimulation increases colonic propagating pressure waves in paediatric slow transit constipation.
- J. Pediatr. Surg. 47, 2279–2284 (2012). 242. Leong, L. C. Y. et al. Long-term effects of transabdominal electrical stimulation in treating children with slow-transit constipation. J. Pediatr. Surg. 46, 2309-2312 (2011).
- 243. Yang, Y., Yim, J., Choi, W. & Lee, S. Improving slowtransit constipation with transcutaneous electrical stimulation in women: a randomized, comparative study. Women Health 57, 494-507 (2017)

- 244. Patidar, N. et al. Transcutaneous posterior tibial nerve stimulation in pediatric overactive bladder: a preliminary report. J. Pediatr. Urol. 11, 351 (2015).
- 245. Lecompte, J.-F., Hery, G., Guys, J.-M. & Louis-Borrione, C. Evaluation of transcutaneous electrical posterior tibial nerve stimulation for the treatment of fecal and urinary leaks in children: preliminary results. J. Pediatr. Surg. 50, 630-633 (2015).
- 246. Iqbal, F. et al. Bilateral transcutaneous tibial nerve stimulation for chronic constipation. Colorectal Dis. 18, 173-178 (2016).
- 247. Collins, B., Norton, C. & Maeda, Y. Percutaneous tibial nerve stimulation for slow transit constipation: a pilot study. Colorectal Dis. 14, e165–e170 (2012).
- 248. Kumar, L. et al. Effectiveness of percutaneous tibial nerve stimulation in managing refractory constipation. Colorectal Dis. 19, 45–49 (2017).
- 249. Madbouly, K. M., Abbas, K. S. & Emanuel, E. Bilateral posterior tibial nerve stimulation in the treatment of rectal evacuation disorder: a preliminary report. *Dis. Colon Rectum* **60**, 311–317 (2017).
- 250. Zhang, T. et al. Efficacy of acupuncture for chronic constipation: a systematic review. Am. J. Chin. Med. 41, 717-742 (2013).
- $251.\ \mbox{Liu},\mbox{ Z. et al.}$ Acupuncture for chronic severe functional constipation. Ann. Intern. Med. 165, 761-769
- 252. Ding, C. et al. Outcomes and prognostic factors of fecal microbiota transplantation in patients with slow transit constipation: results from a prospective study with long-term follow-up. Gastroenterol. Rep. 6, 101-107 (2018).
- 253. Mitchell, P. J. & Sagar, P. M. Emerging surgical therapies for faecal incontinence. Nat. Rev. Gastroenterol. Hepatol. 11, 279-286 (2014).
- 254. Yik, Y. I., Ismail, K. A., Hutson, J. M. & Southwell, B. R. Home transcutaneous electrical stimulation to treat children with slow-transit constipation. J. Pediatr. Surg. 47, 1285-1290 (2012).

Author contributions

M.H.V. researched data for the article. All authors were involved in the writing and review/editing of the manuscript before submission.

Competing interests

M.A.B is a consultant for Shire, Norgine, Coloplast, Danone, Takeda, Allergan, FrieslandCampina, and Novalac. The remaining authors declare no competing interests.

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks O. Borrelli, A. Malcolm, G. Chiarioni and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations